【題目】已知△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且△ABC的面積S= .
(1)求角B的大;
(2)若a=2,且 , 求邊c的取值范圍.
【答案】解:(1)由已知及三角形面積公式得S=acsinB=,
化簡(jiǎn)得sinB=cosB,
即tanB=,又0<B<π,
∴B=.
(2)由正弦定理得,
即c=,
由C=﹣A,得c===,
又由,
知1≤tanA≤,
故c∈[2,+1].
【解析】(1)根據(jù)正弦定理,建立條件關(guān)系,即可求出角B的大小;
(2)根據(jù)正弦定理表示出c,根據(jù)三角函數(shù)的圖象和性質(zhì)即可得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解正弦定理的定義的相關(guān)知識(shí),掌握正弦定理:,以及對(duì)余弦定理的定義的理解,了解余弦定理:;;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校某次N名學(xué)生的學(xué)科能力測(cè)評(píng)成績(jī)(滿分120分)的頻率分布直方圖如下,已知分?jǐn)?shù)在100﹣110的學(xué)生數(shù)有21人
(1)求總?cè)藬?shù)N和分?jǐn)?shù)在110﹣115分的人數(shù)n.;
(2)現(xiàn)準(zhǔn)備從分?jǐn)?shù)在110﹣115的n名學(xué)生(女生占 )中選3位分配給A老師進(jìn)行指導(dǎo),設(shè)隨機(jī)變量ξ表示選出的3位學(xué)生中女生的人數(shù),求ξ的分布列與數(shù)學(xué)期望Eξ;
(3)為了分析某個(gè)學(xué)生的學(xué)習(xí)狀態(tài),對(duì)其下一階段的學(xué)習(xí)提供指導(dǎo)建議,對(duì)他前7次考試的數(shù)學(xué)成績(jī)x、物理成績(jī)y進(jìn)行分析,該生7次考試成績(jī)?nèi)绫?
數(shù)學(xué)(x) | 88 | 83 | 117 | 92 | 108 | 100 | 112 |
物理(y) | 94 | 91 | 108 | 96 | 104 | 101 | 106 |
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,求出y關(guān)于x的線性回歸方程 = x+ .若該生的數(shù)學(xué)成績(jī)達(dá)到130分,請(qǐng)你估計(jì)他的物理成績(jī)大約是多少?
附:對(duì)于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸方程 = x+ 的斜率和截距的最小二乘估計(jì)分別為 = , .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,.
(1)求的極值;
(2) 函數(shù)有兩個(gè)極值點(diǎn),,若恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)列{an},{bn}中,a1=2,b1=4且an , bn , an+1成等差數(shù)列,bn , an+1 , bn+1成等比數(shù)列(n∈N*)
(1)求a2 , a3 , a4及b2 , b3 , b4;由此歸納出{an},{bn}的通項(xiàng)公式,并證明你的結(jié)論.
(2)若cn=log2(),Sn=c1+c2+…+cn , 試問(wèn)是否存在正整數(shù)m,使Sm≥5,若存在,求最小的正整數(shù)m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x),g(x)的定義域都是D,直線x=x0(x0∈D),與y=f(x),y=g(x)的圖象分別交于A,B兩點(diǎn),若|AB|的值是不等于0的常數(shù),則稱曲線y=f(x),y=g(x)為“平行曲線”,設(shè)f(x)=ex-alnx+c(a>0,c≠0),且y=f(x),y=g(x)為區(qū)間(0,+)的“平行曲線”,g(1)=e,g(x)在區(qū)間(2,3)上的零點(diǎn)唯一,則a的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,C是半圓O上除A、B外的一個(gè)動(dòng)點(diǎn),DC垂直于半圓O所在的平面,DC∥EB,DC=EB,AB=4,tan∠EAB= .
證明:平面ADE⊥平面ACD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=-a2 lnx+x2-ax(a∈R).
(1)試討論函數(shù)f(x)的單調(diào)性:
(2)若函數(shù)f(x)在區(qū)間(1,e)中有兩個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , a1=1,且nan+1=2Sn(n∈N*),數(shù)列{bn}滿足b1= , b2= , 對(duì)任意n∈N* , 都有bn+12=bnbn+2 .
求數(shù)列{an}、{bn}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)f(x)=(2x-x2)ex
①(-,)是f(x)的單調(diào)遞減區(qū)間;
②f(-)是f(x)的極小值,f()是f(x)的極大值;
③f(x)沒(méi)有最大值,也沒(méi)有最小值;
④f(x)有最大值,沒(méi)有最小值.
其中判斷正確的是_________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com