分析 先假設(shè)有整數(shù)根,可從奇數(shù)和偶數(shù)兩個方面討論,如果與題設(shè)矛盾,則假設(shè)不成立,進而證明題設(shè).
解答 證明,假設(shè)方程存在實數(shù)根x為整數(shù),則ax2+bx+c=0,∴c=-(ax2+bx)
若x是偶數(shù),則ax2,bx是偶數(shù),ax2+bx是偶數(shù),從而c是偶數(shù),與題設(shè)矛盾、
若x是奇數(shù),則ax2,bx是奇數(shù),ax2+bx是偶數(shù),從而c是偶數(shù),與題設(shè)矛盾.
綜上所述,方程ax2+bx+c=0沒有整數(shù)根.
點評 本題主要考查了函數(shù)與方程的綜合運用,以及分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,1] | B. | [0,2] | C. | [1,2] | D. | [1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48 | B. | 54 | C. | 24$\sqrt{2}$ | D. | 36$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A${\;}_{3}^{2}$C${\;}_{197}^{3}$+C${\;}_{3}^{3}$C${\;}_{197}^{2}$種 | |
B. | C${\;}_{3}^{2}$C${\;}_{198}^{3}$種 | |
C. | C${\;}_{200}^{5}$-C${\;}_{197}^{5}$種 | |
D. | C${\;}_{200}^{5}$-C${\;}_{3}^{1}$C${\;}_{197}^{4}$種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若 m∥n,m⊥α,則 n⊥α | B. | 若 m⊥α,m⊥β,則α⊥β | ||
C. | 若 m⊥α,m⊥β,則α∥β | D. | 若 m∥α,m?β,α∩β=n,則 m∥n |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com