19.已知x>$\frac{5}{4}$,函數(shù)y=x+$\frac{1}{4x-5}$的最小值為$\frac{9}{4}$.

分析 x>$\frac{5}{4}$,變形為y=x+$\frac{1}{4x-5}$=x-$\frac{5}{4}$+$\frac{\frac{1}{4}}{x-\frac{5}{4}}$+$\frac{5}{4}$,利用基本不等式的性質(zhì)即可得出.

解答 解:∵x>$\frac{5}{4}$,
∴函數(shù)y=x+$\frac{1}{4x-5}$=x-$\frac{5}{4}$+$\frac{\frac{1}{4}}{x-\frac{5}{4}}$+$\frac{5}{4}$≥$2\sqrt{(x-\frac{5}{4})×\frac{\frac{1}{4}}{x-\frac{5}{4}}}$+$\frac{5}{4}$=$\frac{9}{4}$,當(dāng)且僅當(dāng)x=$\frac{7}{4}$時取等號.
故答案為:$\frac{9}{4}$.

點(diǎn)評 本題考查了基本不等式的性質(zhì),考查了變形能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知遞增的等比數(shù)列{an}滿足:a2=4,a1+a2+a3=14
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)證明:數(shù)列{an}中任意三項(xiàng)不能構(gòu)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知sinα和cosα是方程5x2-x+m=0的兩實(shí)根.求:
(1)m的值;
(2)當(dāng)α∈(0,π)時,求$\frac{1}{tan(3π-α)}$的值;
(3)sin3α+cos3α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)y=f(x)的定義域D中恰好存在n個值x1,x2,…,xn滿足f(-xi)=f(xi)(i=1,2,…,n),則稱函數(shù)y=f(x)為定義域D上的“n度局部偶函數(shù)”.
已知函數(shù)g(x)=$\left\{\begin{array}{l}{|sin(\frac{π}{2}x)|-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定義域?yàn)椋?∞,0)∪(0,+∞)上的“3度局部偶函數(shù)”,則a的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求函數(shù)f(x)=$\frac{1}{1-{x}^{2}}$+$\frac{1}{{x}^{2}}$(0<x<1)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在△ABC中,點(diǎn)D在邊BC上,∠CAD=$\frac{π}{4}$,AC=$\frac{7}{2}$,cos∠ADB=-$\frac{\sqrt{2}}{10}$
(1)求sin∠C的值;
(2)若△ABD的面積為7,求AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex+6x,g(x)=$\frac{a}{x-3}$+6.
(Ⅰ)若x>3時f(x)>g(x)恒成立,求a的取值范圍;
(Ⅱ)討論函數(shù)F(x)=f(x)-g(x)的零點(diǎn)個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列函數(shù)中,與函數(shù)f(x)=$\frac{{2}^{x}-{2}^{-x}}{{2}^{x}+{2}^{-x}}$的單調(diào)性與奇偶性都相同的是( 。
A.y=sinxB.y=x3-xC.y=2xD.y=lg(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知x,y滿足$\left\{\begin{array}{l}{2x-y+1≤0}\\{2x+y+5≥0}\\{x-y+1≥0}\end{array}\right.$,則z=$\frac{x+1}{x+2y-3}$的取值范圍是[-1,$\frac{1}{7}$].

查看答案和解析>>

同步練習(xí)冊答案