分析 由題意作平面區(qū)域,分類討論當(dāng)x≠-1時(shí),化簡(jiǎn)z=$\frac{x+1}{x+2y-3}$=$\frac{1}{1+2\frac{y-2}{x+1}}$,從而利用幾何意義求解.
解答 解:由題意作平面區(qū)域如下,
當(dāng)x=-1時(shí),z=$\frac{x+1}{x+2y-3}$=0;
當(dāng)x≠-1時(shí),z=$\frac{x+1}{x+2y-3}$=$\frac{1}{1+2\frac{y-2}{x+1}}$,
易知A(-1,2),B(-2,-1),C(0,1);
故kAB=$\frac{2+1}{-1+2}$=3,kAC=$\frac{2-1}{-1-0}$=-1,
故$\frac{y-2}{x+1}$≥3或$\frac{y-2}{x+1}$≤-1,
故1+2$\frac{y-2}{x+1}$≥7或1+2$\frac{y-2}{x+1}$≤-1;
故0<$\frac{1}{1+2\frac{y-2}{x+1}}$≤$\frac{1}{7}$或-1≤$\frac{1}{1+2\frac{y-2}{x+1}}$<0;
綜上所述,-1≤$\frac{1}{1+2\frac{y-2}{x+1}}$≤$\frac{1}{7}$.
故答案為:[-1,$\frac{1}{7}$].
點(diǎn)評(píng) 本題考查了線性規(guī)劃,同時(shí)考查了數(shù)形結(jié)合的思想方法應(yīng)用及分類討論的思想應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a>b=c | B. | b>a=c | C. | b>c>a | D. | a>c>b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com