10.在正數(shù)等比數(shù)列{an}中,已知a2a6=16,a4+a8=8,則q=1.

分析 根據(jù)等比數(shù)列的性質(zhì)和方程的思想即可求出.

解答 解:正數(shù)等比數(shù)列{an}中,a2a6=16,a4+a8=8,
∴a4a8=16,
∴a4,a8是方程x2-8x+16=0的兩個(gè)根,
解得a4=a8=4,
∴q4=$\frac{{a}_{8}}{{a}_{4}}$=1,
解得q=1或q=-1(舍去),
故答案為:1

點(diǎn)評(píng) 本題考查等比數(shù)列的通項(xiàng)公式的應(yīng)用,解題時(shí)要認(rèn)真審題,注意等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\frac{{cos({π-2α})}}{{sin({α-\frac{π}{4}})}}=-\frac{{\sqrt{2}}}{2}$,則-(cosα+sinα)等于( 。
A.$-\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{7}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.雙曲線(xiàn)的離心率為2,則雙曲線(xiàn)的兩條漸近線(xiàn)所成的銳角是60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.用二分法求函數(shù)f(x)的一個(gè)零點(diǎn),得到如下表的參考數(shù)據(jù):
f(1)=-2f(1.5)=0.625
f(1.25)=-0.984f(1.375)=-0.260
f(1.438)=0.165f(1.4065)=-0.052
那么方程f(x)=0的一個(gè)近似解(精確到0.1)為( 。
A.1.2B.1.3C.1.4D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)$y=\sqrt{sin(2x-\frac{π}{4})}$的定義域是( 。
A.$\left\{{x|\frac{π}{4}+2kπ≤x≤\frac{5π}{4}+2kπ,k∈Z}\right\}$B.$\left\{{x|\frac{π}{8}+kπ≤x≤\frac{5π}{8}+kπ,k∈Z}\right\}$
C.$\left\{{x|\frac{π}{8}+2kπ≤x≤\frac{5π}{8}+2kπ,k∈Z}\right\}$D.$\left\{{x|\frac{π}{4}+kπ≤x≤\frac{5π}{4}+kπ,k∈Z}\right\}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列f(x1),f(x2),…f(xn),…是公差為2的等差數(shù)列,且x1=a2其中函數(shù)f(x)=logax(a為常數(shù)且a>0,a≠1).
(Ⅰ)求數(shù)列{xn}的通項(xiàng)公式;
(Ⅱ)若an=logaxn,求證$\frac{4}{{a}_{1}{a}_{2}}$+$\frac{4}{{a}_{2}{a}_{3}}$+…+$\frac{4}{{a}_{n}{a}_{n+1}}$<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.(理)已知$\overrightarrow{a}$=(2,-1,2),$\overrightarrow$=(2,2,1),求以$\overrightarrow{a}$,$\overrightarrow$為鄰邊的平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知兩個(gè)正實(shí)數(shù)x,y滿(mǎn)足x+y=4,則$\frac{1}{x}$+$\frac{4}{y}$的最小值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=|x2-2x-3|的單調(diào)增區(qū)間是[-1,1]和[3,+∞).

查看答案和解析>>

同步練習(xí)冊(cè)答案