11.已知函數(shù)f(x)=e2x-alnx.
(1)討論f(x)的導函數(shù)f′(x)零點的個數(shù);
(2)證明:當a>0時,$f(x)≥2a+aln\frac{2}{a}$.

分析 (I)利用導數(shù)的運算法則可得f′(x),對a分類討論即可得出.
(Ⅱ)由(Ⅰ)知,可設導函數(shù)f′(x)在(0,+∞)上的唯一零點為x0,利用導數(shù)研究其單調性極值最值即可證明.

解答 (Ⅰ)解:f(x)=e2x-alnx的定義域為(0,+∞),
∴f′(x)=2e2x-$\frac{a}{x}$.
當a≤0時,f′(x)>0恒成立,故f′(x)沒有零點,
當a>0時,∵y=e2x為單調遞增,y=-$\frac{a}{x}$單調遞增,
∴f′(x)在(0,+∞)單調遞增,
又f′(a)>0,
假設存在b滿足0<b<$\frac{a}{4}$時,且b<$\frac{1}{4}$,f′(b)<0,
故當a>0時,導函數(shù)f′(x)存在唯一的零點,
(Ⅱ)證明:由(Ⅰ)知,可設導函數(shù)f′(x)在(0,+∞)上的唯一零點為x0,
當x∈(0,x0)時,f′(x)<0,
當x∈(x0+∞)時,f′(x)>0,
故f(x)在(0,x0)單調遞減,在(x0+∞)單調遞增,
∴當x=x0時,f(x)取得最小值,最小值為f(x0),
由于2e${\;}^{2{x}_{0}}$-$\frac{a}{{x}_{0}}$=0,
∴f(x0)=$\frac{a}{2{x}_{0}}$+2ax0+aln$\frac{2}{a}$≥2a+aln$\frac{2}{a}$.

點評 本題考查了利用導數(shù)研究函數(shù)的單調性極值與最值,考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.某城市現(xiàn)有人口總數(shù)為100萬人,如果年自然增長率為1.2%,試解答下面的問題:
(1)寫出該城市人口總數(shù)y(萬人)與年數(shù)x(年)的函數(shù)關系式;
(2)計算10年以后該城市人口總數(shù)(精確到0.1萬人);
(3)計算大約多少年以后該城市人口將達到120萬人(精確到1年).(1.01210=1,.127,1.01215=1.196,1.01216=1.210)
2009年12月20日是世界人口日:
(1)世界人口在過去40年內(nèi)翻了一番,問每年人口平均增長率是多少?
(2)我國人口在2009年底達到12.48億,若將人口平均增長率控制在1%以內(nèi),則我國人口在2019年底至多有多少億?
以下數(shù)據(jù)供計算時使用:
數(shù)N1.0101.0151.0171.3102.000
對數(shù)lgN0.004 30.006 50.007 30.117 30.301 0
數(shù)N3.0005.00012.4813.1113.78
對數(shù)lgN0.477 10.699 01.096 21.117 61.139 2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設等差數(shù)列{an}的公差為d,前n項和為Sn,已知a2=5,S10=120.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,數(shù)列{bn}的前n項和為Tn,求證${T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.如圖,平行四邊形ABCD中,BD=2$\sqrt{3}$,AB=2,AD=4,將△BCD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(I)求證:AB⊥DE
(Ⅱ)求三棱錐E-ABD的側面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=3sin({2x+\frac{π}{6}})$
(1)用“五點法”畫出函數(shù)在長度為一個周期的閉區(qū)間上的簡圖;
(2)完整敘述函數(shù)$f(x)=3sin({2x+\frac{π}{6}})$的圖象可由正弦曲線經(jīng)過怎樣的變化得到?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$\overrightarrow p=(1,2)$,$\overrightarrow q=(-1,3)$,則$\overrightarrow p$在$\overrightarrow q$方向上的射影長為$\frac{\sqrt{10}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.$\int_{0}^{3}{|{x^2}-1|}dx$=$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知向量$\overrightarrow{a}$=(1,-$\sqrt{3}$sin$\frac{x}{2}$),$\overrightarrow$=(sinx,2sin$\frac{x}{2}$).函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$+$\sqrt{3}$,
(1)求f(x)的單調增區(qū)間;
(2)求f(x)在區(qū)間[0,$\frac{2π}{3}$]的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=3,|${\overrightarrow b}$|=2$\sqrt{3}$,$\overrightarrow a$•$\overrightarrow b$=-9,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為-3.

查看答案和解析>>

同步練習冊答案