分析 (1)利用平面向量的數(shù)量積的坐標(biāo)運算及三角函數(shù)中的恒等變換可得f(x)=2sin(x+$\frac{π}{3}$),再利用正弦函數(shù)的單調(diào)性,由2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$(k∈Z)即可求f(x)的單調(diào)增區(qū)間;
(2)x∈[0,$\frac{2π}{3}$]⇒$\frac{π}{3}$≤x+$\frac{π}{3}$≤π,利用正弦函數(shù)的單調(diào)性即可求得(x)在區(qū)間[0,$\frac{2π}{3}$]的最小值.
解答 解:(1)f(x)=sinx-2$\sqrt{3}$sin2$\frac{x}{2}$+$\sqrt{3}$
=sinx+$\sqrt{3}$cosx
=2sin(x+$\frac{π}{3}$),
由2kπ-$\frac{π}{2}$≤x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$(k∈Z)得:
f(x) 的單調(diào)增區(qū)間為[2kπ-$\frac{5π}{6}$,2kπ+$\frac{π}{6}$](k∈Z) …(6分)
(2)∵x∈[0,$\frac{2π}{3}$],∵$\frac{π}{3}$≤x+$\frac{π}{3}$≤π,
∴0≤sin(x+$\frac{π}{3}$)≤1,∴f(x)在[0,$\frac{2π}{3}$]上的最小值為0…(12分)
點評 本題考查平面向量的數(shù)量積的坐標(biāo)運算及三角函數(shù)中的恒等變換應(yīng)用,突出考查正弦函數(shù)的單調(diào)性與最值,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 外切 | B. | 內(nèi)切 | C. | 相交 | D. | 相離 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | 0 | 1 |
P | 6a2-a | 3-7a |
A. | $\frac{1}{3}$ | B. | $\frac{2}{3}$ | C. | $\frac{2}{3}$或$\frac{1}{3}$ | D. | 1或$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com