20.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左右焦點(diǎn)分別為F1,F(xiàn)2,且離心率為$\frac{1}{2}$,點(diǎn)P為橢圓上一動(dòng)點(diǎn),△F1PF2面積的最大值為$\sqrt{3}$.
(1)求橢圓的方程;
(2)設(shè)橢圓的左頂點(diǎn)為A1,過(guò)右焦點(diǎn)F2的直線l與橢圓相交于A,B兩點(diǎn),連結(jié)A1A,A1B并延長(zhǎng)分別交直線x=4于P,Q兩點(diǎn),問$\overrightarrow{P{F_2}}•\overrightarrow{Q{F_2}}$是否為定值?若是,求出此定值;若不是,請(qǐng)說(shuō)明理由.

分析 (1)由題意的離心率公式可得e=$\frac{c}{a}$=$\frac{1}{2}$,設(shè)c=t,a=2t,即$b=\sqrt{3}t$,其中t>0,點(diǎn)P為短軸端點(diǎn),三角形面積取得最大,求得t=1,進(jìn)而得到橢圓方程;
(2)設(shè)直線AB的方程為x=ty+1,A(x1,y1),B(x2,y2),代入橢圓方程,運(yùn)用韋達(dá)定理,求得AA1,BA1的方程,令x=4,可得P,Q的坐標(biāo),運(yùn)用向量的數(shù)量積的坐標(biāo)表示,計(jì)算即可得到定值0.

解答 解:(1)已知橢圓的離心率為$\frac{1}{2}$,
不妨設(shè)c=t,a=2t,即$b=\sqrt{3}t$,其中t>0,
又△F1PF2面積取最大值$\sqrt{3}$時(shí),
即點(diǎn)P為短軸端點(diǎn),因此$\frac{1}{2}•2t•\sqrt{3}t=\sqrt{3}$,解得t=1,
則橢圓的方程為$\frac{x^2}{4}+\frac{y^2}{3}=1$;
(2)設(shè)直線AB的方程為x=ty+1,A(x1,y1),B(x2,y2),
聯(lián)立$\left\{\begin{array}{l}x=ty+1\\ \frac{x^2}{4}+\frac{y^2}{3}=1\end{array}\right.$可得(3+4t2)y2+6ty-9=0,
則${y_1}+{y_2}=\frac{-6t}{{3+4{t^2}}}$,${y_1}{y_2}=\frac{-9}{{3+4{t^2}}}$,
直線AA1的方程為$y=\frac{y_1}{{{x_1}-(-2)}}(x-(-2))$,
直線BA1的方程為$y=\frac{y_2}{{{x_2}-(-2)}}(x-(-2))$,
令x=4,可得$P(4,\frac{{6{y_1}}}{{{x_1}+2}})$,$Q(4,\frac{{6{y_2}}}{{{x_2}+2}})$,
則$\overrightarrow{{F_2}P}=(3,\frac{{6{y_1}}}{{{x_1}+2}})$,$\overrightarrow{{F_2}Q}=(3,\frac{{6{y_2}}}{{{x_2}+2}})$,
即有$\overrightarrow{{F_2}P}•\overrightarrow{{F_2}Q}=9+(\frac{{6{y_1}}}{{{x_1}+2}})(\frac{{6{y_2}}}{{{x_2}+2}})=\frac{{36{y_1}{y_2}}}{{{t^2}{y_1}{y_2}+3t({y_1}+{y_2})+9}}+9=0$,
即$\overrightarrow{P{F_2}}•\overrightarrow{Q{F_2}}$為定值0.

點(diǎn)評(píng) 本題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到橢圓方程的求法,直線與圓錐曲線的相關(guān)知識(shí),以及恒過(guò)定點(diǎn)問題.本題對(duì)考生的化歸與轉(zhuǎn)化思想、運(yùn)算求解能力都有很高要求.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知直線OA、OB、OC兩兩垂直,那么平面AOB、平面AOC、平面BOC中互相垂直的有(  )
A.0對(duì)B.1對(duì)C.2對(duì)D.3對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線方程為y=2x,雙曲線的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P為雙曲線的右支上的一點(diǎn),且滿足∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=$\sqrt{3}$,則雙曲線的方程為( 。
A.4x2-y2=1B.2x2-$\frac{{y}^{2}}{2}$=1C.3x2-$\frac{3{y}^{2}}{4}$=1D.5x2-$\frac{5{y}^{2}}{4}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.?dāng)?shù)列{an}的通項(xiàng)公式an=ncos$\frac{π}{2}$+1,前n項(xiàng)和為Sn,則S2016=2016.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的左頂點(diǎn)和上頂點(diǎn)分別為A、B,左、右焦點(diǎn)分別是F1,F(xiàn)2,在線段AB上有且只有一個(gè)點(diǎn)P滿足PF1⊥PF2,則橢圓的離心率為( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{{\sqrt{5}}}{3}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)定義在R上的奇函數(shù)f(x),其導(dǎo)函數(shù)為f′(x),且f(1)=0,若x>0時(shí),f(x)+xf′(x)>0,則關(guān)于x的不等式f(x)≥0的解集為[-1,0]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=x3-4x2+5x-4.求曲線f(x)在點(diǎn)(2,f(2))處的切線方程x-y-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列四個(gè)圖象中,有一個(gè)是函數(shù)f(x)=$\frac{1}{3}$x3+ax2+(a2-9)x+1(a∈R,a≠0)的導(dǎo)函數(shù)y=f′(x)的圖象,則f(1)=( 。
A.$\frac{13}{3}$B.$\frac{4}{3}$C.-$\frac{5}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是定義在R上的可導(dǎo)函數(shù),f′(x)為其導(dǎo)函數(shù),若對(duì)于任意實(shí)數(shù),都有f(x)>f′(x),其中e為自然對(duì)數(shù)的底數(shù),則( 。
A.ef(2015)>f(2016)B.ef(2015)<f(2016)
C.ef(2015)=f(2016)D.ef(2015)與f(2016)大小關(guān)系不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案