分析 通過求導(dǎo)函數(shù),函數(shù)的極值點,利用函數(shù)f(x)=x2ex在區(qū)間[t,t+1]上不單調(diào),建立不等式,即可求實數(shù)t的取值范圍.
解答 解:函數(shù)f(x)=x2ex的導(dǎo)數(shù)為y′=2xex+x2ex =xex(x+2),
令y′=0,則x=0或-2,
-2<x<0上單調(diào)遞減,(-∞,-2),(0,+∞)上單調(diào)遞增,
∴0或-2是函數(shù)的極值點,
∵函數(shù)f(x)=x2ex在區(qū)間[t,t+1]上不單調(diào),
∴t<-2<t+1或t<0<t+1,
∴-3<t<-2或-1<t<0,
實數(shù)t的取值范圍是:(-3,-2)∪(-1,0),
故答案為:(-3,-2)∪(-1,0).
點評 本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查函數(shù)的極值,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | $\sqrt{15}$ | C. | $\sqrt{19}$ | D. | $\sqrt{37}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com