已知從一點(diǎn)P引出三條射線PA、PB、PC,且兩兩成角60°,則二面角B-PA-C的余弦值是
 
考點(diǎn):二面角的平面角及求法
專題:空間角
分析:運(yùn)用題目的條件得出∠BEC為二面角B-PA-C的平面角,△BEC中,BE=CE=
3
,BC=2,運(yùn)用余弦定理求解即可得出cos∠BEC=
3+3-4
3
×
3
=
1
3
,
解答: 解:從一點(diǎn)P引出三條射線PA、PB、PC,且兩兩成角60°,
取PA=PB=PC=2,PE=1,連接BE,CE
∵∠BPE=∠CPE=60°,
∴△PBE≌△PCE,
∴BE=CE,
根據(jù)余弦定理得出:BE=CE=
4+1-2×2×1×
1
2
=
3
,
∴根據(jù)勾股定理判斷出BE⊥PE,CE⊥PE,
∠BEC為二面角B-PA-C的平面角,
∵△BEC中,BE=CE=
3
,BC=2,
∴cos∠BEC=
3+3-4
3
×
3
=
1
3
,
故答案為:
1
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是二面角的平面角及求法,其中求出二面角的平面角轉(zhuǎn)化為三角形中求解是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
m
n
的夾角為60°,求證:(2
n
-
m
)⊥
m
,并解釋其幾何意義.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(2+
x
n(其中n∈N*)的展開式中含x3項(xiàng)的系數(shù)為14,則n=( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人午覺醒來,發(fā)現(xiàn)表停了,他打開收音機(jī),想聽電臺(tái)報(bào)時(shí),他等待的時(shí)間不多于10分鐘的概率為( 。
A、
1
2
B、
1
4
C、
1
6
D、
1
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:若存在常數(shù)k,使得對(duì)定義域D內(nèi)的任意兩個(gè)x1,x2(x1<x2),均有f(x1)+kx2≤f(x2)+kx1成立,則稱函數(shù)f(x)在定義域D上滿足K條件.若函數(shù)y=2012lnx,x∈[1,2012]滿足K條件,則常數(shù)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U為實(shí)數(shù)集,集合A={x|x2-2x-3<0},B={x|y=ln(1-x)},則圖中陰影部分表示的集合為( 。
A、{x|1≤x<3}
B、{x|x<3}
C、{x|x≤-1}
D、{x|-1<x<1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐S-ABCD中,側(cè)面SAB是邊長(zhǎng)為2的等邊三角形,底面ABCD是矩形且BC=2
3

(1)若平面SAB⊥平面SAD,求該四棱錐的側(cè)面積;
(2)若平面SAB⊥平面SCD,求該四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)半徑為1的球O1,O2相外切,且它們都與半徑為1的圓柱內(nèi)側(cè)面相切,另一小球O3與球O1,O2都相外切,且與圓柱內(nèi)側(cè)面相切.過小球球心O3和大球球心O1的平面與圓柱面相交成一個(gè)橢圓,則該橢圓的離心率的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文科實(shí)驗(yàn)做)已知f(x)=x2+bx+c為偶函數(shù),曲線y=f(x)過點(diǎn)(2,5),g(x)=(x+a)f(x).
(1)若曲線y=g(x)有平行于x軸的切線,求a的取值范圍;
(2)若當(dāng)x=-1,y=g(x)取得極值,且g(x)-k=0在[-2,-
1
2
]上有兩個(gè)根,求k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案