14.如圖1所示,在正方體ABCD-A1B1C1D1中,P為中截面的中心,則△PA1C1在該正方體各個面上的射影可能是 圖2中的①④.

分析 根據(jù)點的投影的做法,做出△PA1C1在該正方體各個面上的射影,這里應(yīng)該有三種情況,做出在前后面上的投影,在上下面上的投影,在左右面上的投影,得到結(jié)果.

解答 解:由所給的正方體知,
△PA1C1在該正方體上下面上的射影是①
△PA1C1在該正方體左右面上的射影是④
△PA1C1在該正方體前后面上的射影是④.
故答案為①④.

點評 本題考查平行投影,考查在正方體內(nèi)的一個三角形在正方體的各個面上的投影情況,要檢驗全面,做到不重不漏.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(X)在R上的圖象是連續(xù)的,若a<b<c,且f(a)•f(b)<0,f(b)•f(c)<0,則函數(shù)f(x)在(a,c)內(nèi)的零點個數(shù)是( 。
A.2個B.不小于2的奇數(shù)個C.不小于2的偶數(shù)個D.至少2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.復(fù)數(shù)z滿足(3+4i)z=5-10i,則$\overline{z}$=( 。
A.-1-2iB.-1+2iC.$\frac{11}{5}$+2iD.$\frac{11}{5}$-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.log2.56.25+lg0.01+$ln\sqrt{e}$-2${\;}^{lo{g}_{2}3}$=$-\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.有四個數(shù),其中前三個數(shù)成等比數(shù)列,其積為216,后三個數(shù)又成等差數(shù)列,其和為12,求這四個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{-x,x≤0}\\{{x}^{2},x>0}\end{array}\right.$.若f(a)=4,則實數(shù)a=( 。
A.-4 或-2B.-4 或 2C.-2 或 4D.-2 或 2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=1-$\frac{2}{{2}^{x}+1}$
(1)求函數(shù)f(x)的定義域和值域;     
(2)試判斷函數(shù)f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某車間某兩天內(nèi),每天都生產(chǎn)n件產(chǎn)品,其中第一天生產(chǎn)了1件次品,第二天生產(chǎn)了2件次品,質(zhì)檢部每天要從生產(chǎn)的產(chǎn)品中隨意抽取4件進行檢查,若發(fā)現(xiàn)有次品,則當(dāng)天的產(chǎn)品不能通過.已知第一天通過檢查的概率為$\frac{3}{5}$.
(1)求n的值;
(2)求兩天都通過檢查的概率;
(3)求兩天中至少有一天通過檢查的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)m為實數(shù),若$\left\{{({x,y})|\left\{{\begin{array}{l}{x-4≤0}\\{y≥0}\\{mx-y≥0({m>0})}\end{array}}\right.}\right\}⊆\left\{{({x,y})|{{({x-2})}^2}+{{({y-2})}^2}≤8}\right\}$,則m的取值范圍為(0,1].

查看答案和解析>>

同步練習(xí)冊答案