12.在△ABC中,∠A=60°,a=$\sqrt{15}$,b=4,那么滿足條件的△ABC( 。
A.有一個解B.有兩個解C.無解D.不確定

分析 求出三角形AB邊上的高h,根據(jù)a與h,a與b的大小關(guān)系判斷.

解答 解:△ABC的邊AB上高h=bsinA=2$\sqrt{3}$.
∵2$\sqrt{3}$$<\sqrt{15}$<4,
∴△ABC有兩解.
故選:B.

點評 本題考查了三角形解得個數(shù)判斷,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

2.若角α的終邊過點P(2cos120°,$\sqrt{2}$sin225°),則cosα=( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$-\frac{1}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)y=f(x),x∈D,若存在常數(shù)C,對?x1∈D,?唯一的x2∈D,使得$\sqrt{f({x}_{1})f({x}_{2})}$=C,則稱常數(shù)C是函數(shù)f(x)在D上的“倍幾何平均數(shù)”.已知函數(shù)f(x)=2-x,x∈[1,3],則f(x)在[1,3]上的“倍幾何平均數(shù)”是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.設(shè)A,B是兩個互斥事件,且P(A∪B)=1,P(A)=$\frac{1}{4}$,P(B)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.數(shù)列{an}中,a1=1,當n≥2時,其前n項的和Sn滿足an=$\frac{{S}_{n}^{2}}{{S}_{n}-1}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=log2$\frac{{S}_{n}}{{S}_{n+2}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知集合A={x|x=m+$\sqrt{2}$n,m,n∈Z}.
(1)試分別判斷x1=-$\sqrt{2}$,x2=$\frac{1}{2-\sqrt{2}}$,x3=(1-2$\sqrt{2}$)2與集合A的關(guān)系;
(2)設(shè)x1,x2∈A,證明:x1•x2∈A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知全集U={1,2,3,4,5},S?∪,T?U,若S∩T={2},(∁US)∩T={4},(∁US)∩(∁UT)={1,5},則有( 。
A.3∈S∩TB.3∉S,但3∈TC.3∈S∩(∁T)D.3∈(∁S)∩(∁T)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.若等邊三角形ABC任一底邊上的高為$\sqrt{3}$,平面上任意一點P滿足$\overrightarrow{CP}$=$\frac{1}{3}$$\overrightarrow{CB}$-$\frac{2}{3}$$\overrightarrow{CA}$,則$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(文)已知 F1、F2為雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦點,若雙曲線上存在點A,使∠F1AF2=90°,且|AF1|=3|AF2|,求雙曲線的離心率.

查看答案和解析>>

同步練習冊答案