14.若曲線f(x)=$\frac{a}{2}$x2-ex不存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是[0,e).

分析 求得f(x)的導(dǎo)數(shù),由題意可得f′(x)=ax-ex=0無實(shí)數(shù)解,即有a=$\frac{{e}^{x}}{x}$,設(shè)g(x)=$\frac{{e}^{x}}{x}$,求得導(dǎo)數(shù)和單調(diào)區(qū)間,求得極小值,結(jié)合圖象即可得到a的范圍.

解答 解:f(x)=$\frac{a}{2}$x2-ex的導(dǎo)數(shù)為f′(x)=ax-ex
由f(x)不存在垂直于y軸的切線,
可得ax-ex=0無實(shí)數(shù)解,
由a=$\frac{{e}^{x}}{x}$,設(shè)g(x)=$\frac{{e}^{x}}{x}$,
可得g′(x)=$\frac{{e}^{x}(x-1)}{{x}^{2}}$,
當(dāng)x>1時(shí),g′(x)>0,g(x)在(1,+∞)遞增;
當(dāng)x<0或0<x<1時(shí),g′(x)<0,g(x)在(-∞,0),(0,1)遞減.
即有g(shù)(x)在x=1處取得極小值,且為e,
由于直線y=a與y=g(x)圖象無交點(diǎn),
可得0≤a<e,
故答案為:[0,e).

點(diǎn)評(píng) 本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,考查導(dǎo)數(shù)的幾何意義,注意運(yùn)用轉(zhuǎn)化思想,以及構(gòu)造函數(shù)法,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)a1,a2,a3均為正數(shù),且a1+a2+a3=1,求$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.關(guān)于x的方程x2+4x+m=0的兩根為x1,x2滿足|x1-x2|=2,則實(shí)數(shù)m的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.(x-$\frac{1}{x}$)6展開式中x2項(xiàng)的系數(shù)為( 。
A.15B.-15C.6D.-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若點(diǎn)P(cosα,sinα)在直線y=-2x上,則sin2α的值等于( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.在(${\frac{1}{{\sqrt{x}}}$-3)n,(n∈{N*)的展開式所有項(xiàng)系數(shù)的和為16,求$\frac{1}{x}$的系數(shù)為54.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)命題p:-6≤m≤6,命題函數(shù)q:f(x)=x2+mx+9(m∈R)沒有零點(diǎn),則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.給出下列命題:
①命題“若方程ax2+x+1=0有兩個(gè)實(shí)數(shù)根,則a≤$\frac{1}{4}$”的逆命題是真命題;
②“函數(shù)f(x)=cos2ax-sin2ax的最小正周期為π”是“a=1”的必要不充分條件;
③函數(shù)f(x)=2x-x2的零點(diǎn)個(gè)數(shù)為2;
④冪函數(shù)y=xa(a∈R)的圖象恒過定點(diǎn)(0,0)
⑤“向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow a$•$\overrightarrow b$<0”;
⑥方程sinx=x有三個(gè)實(shí)根.
其中正確命題的序號(hào)為②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在△ABC中,已知角A、B、C所對(duì)的邊為a、b、c,若ccosB=12,bsinC=5,則c=13.

查看答案和解析>>

同步練習(xí)冊(cè)答案