5.已知x是x1,x2,…,x10的平均值,a1為x1,x2,x3,x4的平均值,a2為x5,x6,x10的平均值,則x=( 。
A.$\frac{2{a}_{1}+3{a}_{2}}{5}$B.$\frac{3{a}_{1}+2{a}_{2}}{5}$C.a1+a2D.$\frac{{a}_{1}+{a}_{2}}{2}$

分析 根據(jù)平均數(shù)的定義與計算公式,列出方程即可求出x的值.

解答 解:∵x是x1,x2,…,x10的平均值,
∴x1+x2+…+x10=10x;
同理x1+x2+x3+x4=4a1,
x5+x6+…+x10=6a2
∴10x=4a1+6a2,
解得x=$\frac{{2a}_{1}+{3a}_{2}}{5}$.
故選:A.

點評 本題考查了平均數(shù)的定義與計算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.指出下列函數(shù)的振幅、周期、初相及當(dāng)x=π時的相位:
(1)y=2sin(3x+$\frac{π}{4}$);
(2)y=$\frac{1}{2}$sin(2x-$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若直線1的傾斜角是120°,且該直線過點(1,k)和(-2,0),則k=( 。
A.-3$\sqrt{3}$B.3$\sqrt{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知i是虛數(shù)單位,若z1=a+$\frac{\sqrt{3}}{2}$i,z2=a-$\frac{\sqrt{3}}{2}$i,若$\frac{{z}_{1}}{{z}_{2}}$為純虛數(shù),則實數(shù)a=( 。
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若0<x<1,那么當(dāng)且僅當(dāng)x=$\frac{1}{3}$時,函數(shù)y=log3x+logx3有最大值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)函數(shù)$f(x)=\left\{{\begin{array}{l}{{4^{{{log}_2}(x-8)}}(x≥9)}\\{2{x^2}-x-8(x<9)}\end{array}}\right.$,若f(t)=4,則t的值為( 。
A.10B.6或10C.6D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為e,一條漸近線的方程為y=$\sqrt{2e-1}$x,則e=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.過定點P(1,2)的直線$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),與圓x2+y2=4相交于A、B兩點.則|AB|=$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知等差數(shù)列{an}滿足an∈N*,且前10項和S10=280,則a9的最大值為( 。
A.29B.49C.50D.58

查看答案和解析>>

同步練習(xí)冊答案