分析 (I)根據(jù)平面向量的共線定理,利用正弦定理,即可求出A的值;
(2)根據(jù)余弦定理,利用基本不等式,即可求出三角形面積的最大值.
解答 解:(I)∵向量$\overrightarrow m$=(cosA,cosB),$\overrightarrow n$=(a,2c-b),$\overrightarrow m$∥$\overrightarrow n$,
∴(2c-b)cosA=acosB,
由正弦定理得:(2sinC-sinB)cosA=sinAcosB,
整理得2sinCcosA=sin(A+B)=sinC;
在△ABC中,sinC≠0,∴cosA=$\frac{1}{2}$,
∵A∈(0,π),故$A=\frac{π}{3}$;
(2)由余弦定理,cosA=$\frac{^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,
又a=2$\sqrt{5}$,∴b2+c2-20=bc≥2bc-20,
得bc≤20,當且僅當b=c時取到“=”;
∴S△ABC=$\frac{1}{2}$bcsinA≤5$\sqrt{3}$,
所以三角形面積的最大值為5$\sqrt{3}$.
點評 本題考查了平面向量的共線定理和正弦、余弦定理的應(yīng)用問題,也考查了基本不等式的應(yīng)用問題,是綜合性題目.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,3) | B. | (-∞,3] | C. | (3,+∞) | D. | [3,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2015 | B. | 2016 | C. | 2017 | D. | 2018 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ③④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com