分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用“裂項(xiàng)求和”方法即可得出.
解答 解:(1)設(shè)數(shù)列{an}的公差為d,由$\left\{\begin{array}{l}{a_1}+{a_2}=7\\{a_3}=8\end{array}\right.$,得$\left\{\begin{array}{l}{a_1}+{a_1}+d=7\\{a_1}+2d=8\end{array}\right.$.
解得a1=2,d=3,
∴an=2+3(n-1)=3n-1.
(2)∵${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{{({3n-1})[{3({n+1})-1}]}}=\frac{1}{{({3n-1})({3n+2})}}=\frac{1}{3}({\frac{1}{3n-1}-\frac{1}{3n+2}})$∴${T_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{3}({\frac{1}{2}-\frac{1}{5}})+\frac{1}{3}({\frac{1}{5}-\frac{1}{8}})+…+\frac{1}{3}({\frac{1}{3n-1}-\frac{1}{3n+2}})$=$\frac{1}{3}({\frac{1}{2}-\frac{1}{3n+2}})=\frac{n}{{2({3n+2})}}$.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和方法”、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-1,3) | B. | [-1,3] | C. | ∅ | D. | (2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5+2$\sqrt{5}$ | B. | -5-2$\sqrt{5}$ | C. | -2+2$\sqrt{5}$ | D. | 5-2$\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{32}{9}$ | B. | $\frac{16}{9}$ | C. | $\frac{8}{9}$ | D. | $\frac{4}{9}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com