【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構(gòu)成斜邊為的等腰直角三角形.

(1)求橢圓的方程;

(2)動直線交橢圓兩點,試問:在坐標(biāo)平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標(biāo);若不存在,請說明理由。

【答案】(1); (2)線段AB為直徑的圓恒過點Q(0,1).

【解析】

(1)根據(jù)橢圓的一個焦點與短軸的兩個頂點的連線構(gòu)成等腰直角三角形,以及斜邊長為,可求出,進而可求出橢圓方程;

(2)先由直線可得求過定點;根據(jù)軸平行時或軸平行時,先求出定點,再由證明即可.

(1)橢圓的一個焦點與短軸的兩個頂點的連線構(gòu)成等腰直角三角形,.

又斜邊長為,即,故,

橢圓方程為.

(2)由題意可知該動直線過定點,

當(dāng)軸平行時,以線段AB為直徑的圓的方程為;

當(dāng)軸平行時,以線段AB為直徑的圓的方程為.

,

故若存在定點,則的坐標(biāo)只可能為.

下面證明為所求:

若直線的斜率不存在,上述已經(jīng)證明.

若直線的斜率存在,設(shè)直線

,,

, ,,

,

=,

,即以線段AB為直徑的圓恒過點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形與矩形所在平面相互垂直, , , .

(Ⅰ)求證: 平面

(Ⅱ)求四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—5;不等式選講.

已知函數(shù)

(1)的解集非空,求實數(shù)的取值范圍;

(2)若正數(shù)滿足 為(1)中m可取到的最大值,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,過點的直線的參數(shù)方程為為參數(shù)).以原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程和曲線的直角坐標(biāo)方程;

(2)若直線與曲線相交于, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線過點,直線過點與拋物線交于, 兩點.點關(guān)于軸的對稱點為,連接.

(1)求拋物線線的標(biāo)準(zhǔn)方程;

(2)問直線是否過定點?若是,求出定點坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】的展開式中第6項的系數(shù)最大,則不含的項等于__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列中, , ,其中

求證:數(shù)列為等差數(shù)列;

設(shè), ,數(shù)列的前項和為,若當(dāng)為偶數(shù)時, 恒成立,求實數(shù)的取值范圍;

設(shè)數(shù)列的前項的和為,試求數(shù)列的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平分,平面,,點上,.

(1)求證:平面

(2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了提高信息在傳輸中的抗干擾能力,通常在原信息中按一定規(guī)則加入相關(guān)數(shù)據(jù)組成傳輸信息.設(shè)原信息為,傳輸信息為,其中 , 運算規(guī)則為: , , .例如:原信息為111,則傳輸信息為01111.傳輸信息在傳輸過程中受到干擾可能導(dǎo)致接收信息出錯,則下列接收信息出錯的是( )

A. 01100 B. 11010 C. 10110 D. 11000

查看答案和解析>>

同步練習(xí)冊答案