4.已知隨機(jī)變量2ξ+η=8,若ξ~B(10,0.4),則E(η)=0,D(η)9.6.

分析 根據(jù)變量ξ~B(10,0.4)可以根據(jù)公式做出這組變量的均值與方差,隨機(jī)變量2ξ+η=8,知道變量η也符合二項(xiàng)分布,故可得結(jié)論.

解答 解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,
∵2ξ+η=8,
∴Eη=E(8-2ξ)=8-8=0,Dη=D(8-2ξ)=4×2.4=9.6,
故答案為:0; 9.6.

點(diǎn)評(píng) 本題考查變量的均值與方差,均值反映數(shù)據(jù)的平均水平,而方差反映數(shù)據(jù)的波動(dòng)大小,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.?dāng)?shù)列{an}滿(mǎn)足an+1+an-1=an,且a1=1,a2=5,那么a1-a2+a3-…+a15-a16+a17的值為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,位于A處的海面觀測(cè)站獲悉,在其正東方向相距40海里的B處有一艘漁船遇險(xiǎn),并在原地等待營(yíng)救.在A處南偏西30°且相距20海里的C處有一艘救援船,該船接到觀測(cè)站通告后立即前往B處求助,則sin∠ACB=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.如果長(zhǎng)方體三面的面積分別是$\sqrt{2},\sqrt{3},\sqrt{6}$,那么它的外接球的半徑是( 。
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.如圖,動(dòng)物園要圍成四間相同面積的長(zhǎng)方形虎籠,一面可利用原有的墻,其他各面用鋼筋網(wǎng)圍成,設(shè)每間虎籠的長(zhǎng)為xm,寬為ym,現(xiàn)有36m長(zhǎng)的鋼筋網(wǎng)材料,為使每間虎籠面積最大,則$\frac{x}{y}$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(x,3),若$\overrightarrow{a}$與$\overrightarrow$共線,則|$\overrightarrow{a}$|=2;若$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow$|=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.對(duì)任意的向量$\overrightarrow a$,$\overrightarrow b$和實(shí)數(shù)x∈[0,1],如果滿(mǎn)足$|{\overrightarrow a}|=2|{\overrightarrow a-\overrightarrow b}|$,都有$|{\overrightarrow a-x\overrightarrow b}|≤λ|{\overrightarrow a-\overrightarrow b}|$成立,那么實(shí)數(shù)λ的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

下列四個(gè)命題中錯(cuò)誤的個(gè)數(shù)是( )

①垂直于同一條直線的兩條直線相互平行;

②垂直于同一個(gè)平面的兩條直線相互平行;

③垂直于同一條直線的兩個(gè)平面相互平行;

④垂直于同一個(gè)平面的兩個(gè)平面相互平行.

A.1 B.2 C.3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年江西吉安一中高二上段考一數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

過(guò)點(diǎn)、點(diǎn)且圓心在直線上的圓的方程是( )

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案