分析 (1)根據(jù)條件建立方程組關(guān)系,求出首項,利用數(shù)列的遞推關(guān)系證明數(shù)列{an}是公比q=3的等比數(shù)列,即可求通項公式an,再根據(jù)等比數(shù)列的求和公式計算即可;
(2)根據(jù)對數(shù)的運算性質(zhì)化簡bn=n,繼而得到$\frac{1}{_{n}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),裂項求和并放縮即可證明
解答 解:(1)∵S2=4,an+1=2Sn+1,n∈N*,
∴a1+a2=4,a2=2a1+1,解得a1=1,a2=3.
n≥2時,an=2Sn-1+1,可得:an+1-an=2Sn+1-(2Sn-1+1),
化為:an+1=3an.
∴數(shù)列{an}是等比數(shù)列,公比為3,首項為1.
∴an=3n-1.
∴Sn=$\frac{1-{3}^{n}}{1-3}$=$\frac{{3}^{n}-1}{2}$,
(2)bn=log3an+1=log33n=n,
∴$\frac{1}{_{n}_{n+2}}$=$\frac{1}{n(n+2)}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{_{1}_{3}}$+$\frac{1}{_{2}_{4}}$+$\frac{1}{_{3}_{5}}$+…+$\frac{1}{_{n}_{n+2}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}$-$\frac{1}{4}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n-1}$-$\frac{1}{n+1}$+$\frac{1}{n}$-$\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{1}{2}$($\frac{3}{2}$-$\frac{1}{n+1}$-$\frac{1}{n+2}$)<$\frac{3}{4}$,
即:Tn<$\frac{3}{4}$.
點評 本題主要考查遞推數(shù)列的應(yīng)用以及數(shù)列求和的計算,根據(jù)條件建立方程組以及利用方程組法證明列{an}是等比數(shù)列是解決本題的關(guān)鍵.求出過程中使用了裂項求和和放縮法證明不等式成立,屬于中檔題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B*D,A*D | B. | B*D,A*C | C. | B*C,A*D | D. | C*D,A*D |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1) | B. | (0,1)∪(1,+∞) | C. | (1,+∞) | D. | (0,$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com