【題目】設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項(xiàng)為1的等比數(shù)列;
(2)若a2>﹣1,求證 ,并給出等號(hào)成立的充要條件.
【答案】
(1)證明:∵Sn+1=a2Sn+a1,①
∴Sn+2=a2Sn+1+a1,②
②﹣①可得:an+2=a2an+1
∵a2≠0,∴
∵Sn+1=a2Sn+a1,∴S2=a2S1+a1,∴a2=a2a1
∵a2≠0,∴a1=1
∴{an}是首項(xiàng)為1的等比數(shù)列;
(2)證明:當(dāng)n=1或2時(shí), 等號(hào)成立
設(shè)n≥3,a2>﹣1,且a2≠0,由(Ⅰ)知a1=1, ,所以要證的不等式可化為
(n≥3)
即證 (n≥2)
a2=1時(shí),等號(hào)成立
當(dāng)﹣1<a2<1時(shí), 與 同為負(fù);
當(dāng)a2>1時(shí), 與 同為正;
∴a2>﹣1且a2≠1時(shí),( )( )>0,即
上面不等式n分別取1,2,…,n累加可得
∴
綜上, ,等號(hào)成立的充要條件是n=1或2或a2=1.
【解析】(1)根據(jù)Sn+1=a2Sn+a1 , 再寫一式,兩式相減,即可證得{an}是首項(xiàng)為1的等比數(shù)列;(2)當(dāng)n=1或2時(shí), 等號(hào)成立,設(shè)n≥3,a2>﹣1,且a2≠0,由(1)知a1=1, ,所以要證的不等式可化為 (n≥3),即證 (n≥2),a2=1時(shí),等號(hào)成立;再證明a2>﹣1且a2≠1時(shí),( )( )>0,即可證得結(jié)論.
【考點(diǎn)精析】利用等比數(shù)列的前n項(xiàng)和公式和等比關(guān)系的確定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知前項(xiàng)和公式:;等比數(shù)列可以通過定義法、中項(xiàng)法、通項(xiàng)公式法、前n項(xiàng)和法進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是( )
A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中 ,為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系與直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸.曲線的極坐標(biāo)方程為,已知傾斜角為的直線經(jīng)過點(diǎn).
(1)寫出直線的參數(shù)方程;曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD,AB=1,BC= .將△ABD沿矩形的對(duì)角線BD所在的直線進(jìn)行翻折,在翻折過程中( )
A.存在某個(gè)位置,使得直線AC與直線BD垂直
B.存在某個(gè)位置,使得直線AB與直線CD垂直
C.存在某個(gè)位置,使得直線AD與直線BC垂直
D.對(duì)任意位置,三對(duì)直線“AC與BD”,“AB與CD”,“AD與BC”均不垂直
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c.已知cosA= ,sinB= C.
(1)求tanC的值;
(2)若a= ,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級(jí)1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺(tái)采訪,請(qǐng)根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費(fèi)者開始選擇網(wǎng)絡(luò)購(gòu)物這種消費(fèi)方式某營(yíng)銷部門統(tǒng)計(jì)了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡(luò)銷售情況得到網(wǎng)民對(duì)不同特產(chǎn)的最滿意度和對(duì)應(yīng)的銷售額(萬元)數(shù)據(jù),如下表:
特產(chǎn)種類 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最滿意度 | ||||||||||
銷售額(萬元) |
求銷量額關(guān)于最滿意度的相關(guān)系數(shù);
我們約定:銷量額關(guān)于最滿意度的相關(guān)系數(shù)的絕對(duì)值在以上(含)是線性相關(guān)性較強(qiáng);否則,線性相關(guān)性較弱.如果沒有達(dá)到較強(qiáng)線性相關(guān),則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額關(guān)于最滿意度的線性回歸方程(系數(shù)精確到).
參考數(shù)據(jù):,,,.
附:對(duì)于一組數(shù)據(jù).其回歸直線方程的斜率和截距的最小二乘法估計(jì)公式分別為:,.線性相關(guān)系數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com