精英家教網 > 高中數學 > 題目詳情

【題目】設l為曲線C:y= 在點(1,0)處的切線.
(1)求l的方程;
(2)證明:除切點(1,0)之外,曲線C在直線l的下方.

【答案】
(1)解:∵

∴l(xiāng)的斜率k=y′|x=1=1

∴l(xiāng)的方程為y=x﹣1


(2)證明:令f(x)=x(x﹣1)﹣lnx,(x>0)

曲線C在直線l的下方,即f(x)=x(x﹣1)﹣lnx>0,

則f′(x)=2x﹣1﹣ =

∴f(x)在(0,1)上單調遞減,在(1,+∞)上單調遞增,又f(1)=0

∴x∈(0,1)時,f(x)>0,即 <x﹣1

x∈(1,+∞)時,f(x)>0,即 <x﹣1

即除切點(1,0)之外,曲線C在直線l的下方


【解析】(1)求出切點處切線斜率,代入代入點斜式方程,可以求解;(2)利用導數分析函數的單調性,進而分析出函數圖象的形狀,可得結論.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,菱形ABCD與正三角形BCE的邊長均為2,且平面ABCD⊥平面BCE,平面ABCD,

(I)求證:平面ABCD;

(II)求證:平面ACF⊥平面BDF.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在正方形OABC中,O為坐標原點,點A的坐標為(10,0),點C的坐標為(0,10),分別將線段OA和AB十等分,分點分別記為A1 , A2 , …,A9和B1 , B2 , …,B9 , 連接OBi , 過Ai作x軸的垂線與OBi , 交于點

(1)求證:點 都在同一條拋物線上,并求拋物線E的方程;
(2)過點C作直線l與拋物線E交于不同的兩點M,N,若△OCM與△OCN的面積之比為4:1,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校課題組為了研究學生的數學成績和物理成績之間的關系,隨機抽取高二年級20名學生某次考試成績(百分制)如下表所示:

序號

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

數學成績

95

75

80

94

92

65

67

84

98

71

67

93

64

78

77

90

57

83

72

83

物理成績

90

63

72

87

91

71

58

82

93

81

77

82

48

85

69

91

61

84

78

86

若數學成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀,則有多少把握認為學生的數學成績與物理成績有關系( )

A. 95% B. 97.5% C. 99.5% D. 99.9%

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,橢圓的左、右焦點分別為,橢圓上一點,且垂直于軸,連結并延長交橢圓于另一點,設.

(1)若點的坐標為,求橢圓的方程及的值;

(2)若,求橢圓的離心率的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知A,B,C是橢圓W: 上的三個點,O是坐標原點.
(1)當點B是W的右頂點,且四邊形OABC為菱形時,求此菱形的面積;
(2)當點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某班級有50名學生,其中有30名男生和20名女生,隨機詢問了該班五名男生和五名女生在某次數學測驗中的成績,五名男生的成績分別為86,94,88,92,90,五名女生的成績分別為88,93,93,88,93,下列說法正確的是(
A.這種抽樣方法是一種分層抽樣
B.這種抽樣方法是一種系統(tǒng)抽樣
C.這五名男生成績的方差大于這五名女生成績的方差
D.該班男生成績的平均數大于該班女生成績的平均數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,圓錐頂點為P,底面圓心為O,其母線與底面所成的角為22.5°,AB和CD是底面圓O上的兩條平行的弦,軸OP與平面PCD所成的角為60°,

(1)證明:平面PAB與平面PCD的交線平行于底面;
(2)求cos∠COD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設數列{an}的前n項和Sn滿足Sn+1=a2Sn+a1 , 其中a2≠0.
(1)求證:{an}是首項為1的等比數列;
(2)若a2>﹣1,求證 ,并給出等號成立的充要條件.

查看答案和解析>>

同步練習冊答案