19.設(shè)a,b,c為正數(shù),p=a+$\frac{1}$,q=b+$\frac{1}{c}$,r=c+$\frac{1}{a}$,則下列說法正確的是( 。
A.p,q,r都不大于2B.p,q,r都不小于2
C.p,q,r至少有一個不小于2D.p,q,r至少有一個不大于2

分析 本題可以先猜想出相關(guān)結(jié)論,再用反證法加以證明.

解答 解:(反證法)
假設(shè)p,q,r三個數(shù)均小于2,即p<2,q<2,r<2.則p+q+r<6 ①
又p+q+r=a+$\frac{1}$+b+$\frac{1}{c}$+c+$\frac{1}{a}$=(a+$\frac{1}{a}$)+(b+$\frac{1}$)+(c+$\frac{1}{c}$)≥2$\sqrt{a•\frac{1}{a}}$+2$\sqrt{b•\frac{1}}$+2$\sqrt{c•\frac{1}{c}}$=6.
即p+q+r≥6 ②
∴①②矛盾,假設(shè)不成立.
∴p,q,r三個數(shù)至少有一個不小于2.
故選C.

點評 本題考查的知識點是反證法、基本不等式,思維難度不大,運算量適中,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

9.在△ABC中,角A,B,C對的邊分別為a,b,c,且$\sqrt{3}$bcosA=asinB.
(1)求角A的大;
(2)若a=$\sqrt{13}$,△ABC的面積為$\sqrt{3}$,求三角形△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.由1,2,3,0組成沒有重復數(shù)字的三位數(shù),其中0不在個位上,則這些三位數(shù)的和為( 。
A.1320B.1332C.2532D.2544

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知角α,β均為銳角,且cosα=$\frac{{2\sqrt{5}}}{5}$,sinβ=$\frac{{3\sqrt{10}}}{10}$,則α-β的值為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$-\frac{π}{4}$D.$\frac{π}{4}或-\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.等差數(shù)列{an}共有2n+1項,所有奇數(shù)項之和為132,所有偶數(shù)項之和為120,則n等于( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.定義在區(qū)間(0,$\frac{π}{2}$)上的函數(shù)y=2cosx的圖象與y=3tanx的圖象的交點為P,過點P作PP1⊥x軸,垂足為P1,直線PP1與y=$\frac{1}{2}$sinx的圖象交于點P2,則線段P1P2的長為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.sin63°cos33°-sin27°sin33°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知正方體ABCD-A1B1C1D1的棱長為2,則點D到平面ACD1的距離為( 。
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{3}}{3}$C.$\sqrt{3}$D.$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在三棱柱ABC-A1B1C1中,底面邊長與側(cè)棱長均等于2,且E為CC1的中點,則點C1到平面AB1E的距離為( 。
A.$\sqrt{3}$B.$\sqrt{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習冊答案