A. | p,q,r都不大于2 | B. | p,q,r都不小于2 | ||
C. | p,q,r至少有一個不小于2 | D. | p,q,r至少有一個不大于2 |
分析 本題可以先猜想出相關(guān)結(jié)論,再用反證法加以證明.
解答 解:(反證法)
假設(shè)p,q,r三個數(shù)均小于2,即p<2,q<2,r<2.則p+q+r<6 ①
又p+q+r=a+$\frac{1}$+b+$\frac{1}{c}$+c+$\frac{1}{a}$=(a+$\frac{1}{a}$)+(b+$\frac{1}$)+(c+$\frac{1}{c}$)≥2$\sqrt{a•\frac{1}{a}}$+2$\sqrt{b•\frac{1}}$+2$\sqrt{c•\frac{1}{c}}$=6.
即p+q+r≥6 ②
∴①②矛盾,假設(shè)不成立.
∴p,q,r三個數(shù)至少有一個不小于2.
故選C.
點評 本題考查的知識點是反證法、基本不等式,思維難度不大,運算量適中,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1320 | B. | 1332 | C. | 2532 | D. | 2544 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{4}$ | C. | $-\frac{π}{4}$ | D. | $\frac{π}{4}或-\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{2\sqrt{3}}{9}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com