【題目】在直角坐標系xOy中,直線lyt(t≠0)交y軸于點M,交拋物線Cy2=2px(p>0)于點P,M關于點P的對稱點為N,連結ON并延長交C于點H.

(1)求;

(2)除H以外,直線MHC是否有其它公共點?說明理由.

【答案】(1)2. (2)見解析.

【解析】試題分析:(1)根據(jù)題意,聯(lián)立yt 和拋物線方程可得P點坐標,進而得到N點坐標,再聯(lián)立直線ON與拋物線方程可求得H點坐標,進而可求得的值;

(2)求出直線MH的方程,并代入拋物線方程中,求出只有一個公共點,從而得證。

試題解析:(1)由已知得M(0,t),P(,t).

NM關于點P的對稱點,故N(,t),ON的方程為yx,

代入y2=2px整理得px2-2t2x=0,解得x1=0,x2,

因此H(,2t),∴NOH的中點,即=2.6分

(2)直線MHCH以外沒有其它公共點.理由如下:

直線MH的方程為ytx,即x (yt).

代入y2=2pxy2-4ty+4t2=0,解得y1y2=2t,即直線MHC只有一個公共點.

∴除H以外直線MHC沒有其它公共點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, , 是線段的中點,且 平面

(Ⅰ)求證:平面平面;

(Ⅱ)求證: 平面;

(Ⅲ)若, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱柱中, 平面,底面為梯形, , ,點 分別為, 的中點.

(Ⅰ)求證: 平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)在線段上是否存在點,使與平面所成角的正弦值是,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了凈化空氣,某科研單位根據(jù)實驗得出,在一定范圍內,每噴灑1個單位的凈化劑,空氣中釋放的濃度y(單位:毫克/立方米)隨著時間x(單位:天)變化的函數(shù)關系式近似為y 若多次噴灑,則某一時刻空氣中的凈化劑濃度為每次投放的凈化劑在相應時刻所釋放的濃度之和.由實驗知,當空氣中凈化劑的濃度不低于4(毫克/立方米)時,它才能起到凈化空氣的作用.

(1)若一次噴灑4個單位的凈化劑,則凈化時間可達幾天?

(2)若第一次噴灑2個單位的凈化劑,6天后再噴灑a(1≤a≤4)個單位的藥劑,要使接下來的4天中能夠持續(xù)有效凈化,試求a的最小值(精確到0.1,參考數(shù)據(jù): 取1.4).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知兩個正方形ABCDDCEF不在同一平面內,MN分別為AB,DF的中點.

(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;

(2)用反證法證明:直線MEBN是兩條異面直線.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分別是AB、BC的中點,證明A1、C1、F、E四點共面,并求直線CD1與平面A1C1FE所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,點在橢圓

)求的方程.

)設直線不經(jīng)過點且與相交于、兩點,若直線與直線的斜率的和為,

證明: 過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(2017·北京高考)由四棱柱ABCDA1B1C1D1截去三棱錐C1B1CD1后得到的幾何體如圖所示.四邊形ABCD為正方形,OACBD的交點,EAD的中點,A1E⊥平面ABCD.

(1)證明:A1O∥平面B1CD1;

(2)設MOD的中點,證明:平面A1EM⊥平面B1CD1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)當時,求在點的切線方程;

(2)若對, 恒成立,求的取值范圍.

查看答案和解析>>

同步練習冊答案