2.某校高二年級(jí)有男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人,進(jìn)行問(wèn)卷調(diào)查,設(shè)其中某項(xiàng)問(wèn)題的選擇支為“同意”,“不同意”兩種,且每人都做了一種選擇,下面表格中提供了被調(diào)查人答卷情況的部分信息.
 同意 不同意  合計(jì)
 教師 1  
 女生  4 
 男生  2 
(1)請(qǐng)完成此統(tǒng)計(jì)表;
(2)試估計(jì)高二年級(jí)學(xué)生“同意”的人數(shù);
(3)從被調(diào)查的女生中選取2人進(jìn)行訪談,求選到的兩名學(xué)生中,恰有一人“同意”一人“不同意”的概率.

分析 (1)利用分層抽樣原理計(jì)算抽取的女生、男生和教師所抽取的人數(shù),填表即可;
(2)根據(jù)表中數(shù)據(jù)計(jì)算女生、男生同意的概率,再計(jì)算男、女生同意的人數(shù);
(3)用列舉法計(jì)算所求的概率值.

解答 解:(1)根據(jù)題意,填寫(xiě)被調(diào)查人答卷情況統(tǒng)計(jì)表如下:
男生105人,女生126人,教師42人,用分層抽樣的方法從中抽取13人,進(jìn)行問(wèn)卷調(diào)查,設(shè)其中某項(xiàng)問(wèn)題的選擇支為“同意”,“不同意”兩種,且每人都做了一種選擇,下面表格中提供了被調(diào)查人答卷情況的部分信息.

 同意 不同意  合計(jì)
 教師 1 1
 女生 2 4
 男生3 2 5
(2)由表格可以看出女生同意的概率是$\frac{1}{3}$,男生同意的概率是$\frac{3}{5}$;
用男女生同意的概率乘以人數(shù),得到同意的結(jié)果數(shù)為
105×$\frac{3}{5}$+126×$\frac{1}{3}$=105,
估計(jì)高二年級(jí)學(xué)生“同意”的人數(shù)為105人;
(3)設(shè)“同意”的兩名學(xué)生編號(hào)為1,2,
“不同意”的四名學(xué)生分別編號(hào)為3,4,5,6,
選出兩人則有(1,2),(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),
(3,6),(4,5),(4,6),(5,6)共15種方法;
其中(1,3),(1,4),(1,5),(1,6),
(2,3),(2,4),(2,5),(2,6),共8種滿(mǎn)足題意;
則恰有一人“同意”一人“不同意”的概率為P=$\frac{8}{15}$.

點(diǎn)評(píng) 本題考查了分層抽樣方法和列舉法求古典概型的概率問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為矩形,M是AD上一點(diǎn).
(1)求證:AB⊥PM;
(2)若N是PB的中點(diǎn),且AN∥平面PCM,求$\frac{AM}{AD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=\frac{{\sqrt{x+1}}}{x-2}$的定義域?yàn)閇-1,2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.在正方形ABCD-A1B1C1D1中,直線A1D與BC1的夾角為( 。
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=x3+mx2+nx-2的圖象在點(diǎn)(-1,f(-1))處的切線方程為9x-y+3=0.
(1)求函數(shù)y=f(x)的解析式和單調(diào)區(qū)間;
(2)若函數(shù)f(x)(x∈[0,3])的值域?yàn)锳,函數(shù)f(x)(x∈[a,a+$\frac{3}{2}$])的值域?yàn)锽,當(dāng)B⊆A時(shí),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)實(shí)二次函數(shù)f(x)=ax2+bx+c,a>0,己知有三個(gè)互不相同的整數(shù)n1,n2,n3使得|f(ni)|≤100,i=1,2,3,求證:
(1)存在實(shí)數(shù)x0,滿(mǎn)足:|f(x0)|≤100且|f(x0+1)|≤100.
(2)a≤200.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,在正方體ABCD-A1B1C1D1中,點(diǎn)E為正方形ABCD的兩條對(duì)角線的交點(diǎn),點(diǎn)F是棱AB的中點(diǎn),則異面直線AC1與EF所成角的正切值為( 。
A.-$\sqrt{2}$B.-$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.函數(shù)$y=2sin(4x-\frac{π}{6})+1$的最小正周期為( 。
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)集合A={-2},B={x|ax+1=0},若A∩B=B,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案