16.下列事件是復(fù)合事件的是( 。
A.拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是2
B.拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是4
C.拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是6
D.拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是偶數(shù)

分析 復(fù)合事件是由基本事件構(gòu)成的,問題得以判斷,

解答 解:拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是2,4,6為基本事件,
而拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是偶數(shù),包含出現(xiàn)點數(shù)是2,4,6,
故拋擲一顆均勻的骰子,出現(xiàn)點數(shù)是偶數(shù)是復(fù)合事件,
故選:D.

點評 本題考查了基本事件的定義,復(fù)合事件的定義,任何兩個基本事件是互斥的,任何事件(除不可能事件)都可以表示成基本事件的和,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率e=$\frac{1}{2}$,P($\sqrt{3}$,$\frac{\sqrt{3}}{2}$)為橢圓C上的點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 若直線y=kx+b(k≠0)與橢圓C交于不同的兩點A、B,且線段AB的垂直平分線過定點M($\frac{1}{3}$,0),求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,斜四棱柱ABCD-A1B1C1D1的底面是邊長為1的正方形,側(cè)面AA1B1B⊥底面ABCD,AA1=2,∠B1BA=60°.
(1)求證:平面AB1C⊥平面BDC1;
(2)在棱A1D1上是否存在一點E,使二面角E-AC-B1的余弦值是$\frac{\sqrt{6}}{3}$?若存在,求$\frac{{A}_{1}E}{{A}_{1}{D}_{1}}$,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在梯形ABCD中,AB∥CD,AD=6,cos∠ADC=-$\frac{1}{3}$.
(1)若∠CAB=$\frac{π}{4}$,求AC的長;
(2)若BD=9,求△ABD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知復(fù)數(shù)z=$\frac{3-ai}{2-i}$的實部為1,則實數(shù)a等于(  )
A.-2B.2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.商店經(jīng)理要合理地安排售貨員的人數(shù),安排多少名售貨員依賴于顧客的人數(shù),而顧客的人數(shù)是隨機(jī)的,事先無法確定,如果假定商店經(jīng)理知道任一時刻來到k名顧客的概率p,如下:
 k 0 1 2 3 4 5 6 7>7
 p 0.03 0.10 0.14 0.19 0.21 0.19 0.09 0.04 0.01
(1)安排3名售貨員能以多大概率使顧客不用等侍?
(2)安排多少名售貨員能以99%的概率使顧客不用等待?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列說法正確的是( 。
A.函數(shù)y=(x+a)2+b的圖象經(jīng)過點(a,b)
B.函數(shù)y=ax(a>0且a≠1)的圖象經(jīng)過點(1,0)
C.函數(shù)y=logax(a>0且a≠1)的圖象經(jīng)過點(0,1)
D.函數(shù)y=xa(a∈R)的圖象經(jīng)過點(1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,邊長為2的正方形ABCD中,點E是AB的中點,點F是BC的中點,將△AED、△DCF分別沿DE、DF折起,使A、C兩點重合于點A′,連接EF,A′B.

(1)求證:A′D⊥EF;
(2)求直線A′D與平面EFD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)y=sinx2的圖象是( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案