12.若點(diǎn)P在線段P1P2的延長線上,P1(4,-3),P2(-2,6),且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|,則點(diǎn)P的坐標(biāo)為(-4,9).

分析 設(shè)出點(diǎn)P(x,y),由題意知,$\overrightarrow{{P}_{1}P}$=-4$\overrightarrow{{PP}_{2}}$;利用坐標(biāo)表示列出方程組求出x、y的值即可.

解答 解:設(shè)點(diǎn)P(x,y),由點(diǎn)P在線段P1P2的延長線上,且|$\overrightarrow{{P}_{1}P}$|=4|$\overrightarrow{P{P}_{2}}$|知,
$\overrightarrow{{P}_{1}P}$=-4$\overrightarrow{{PP}_{2}}$;
∴$\overrightarrow{{P}_{1}P}$=(x-4,y+3),
$\overrightarrow{{PP}_{2}}$=(-2-x,6-y),
∴(x-4,y+3)=-4(-2-x,6-y),
即$\left\{\begin{array}{l}{x-4=-4(-2-x)}\\{y+3=-4(6-y)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=-4}\\{y=9}\end{array}\right.$,
即點(diǎn)P的坐標(biāo)為(-4,9).
故答案為:(-4,9).

點(diǎn)評(píng) 本題考查了平面向量的坐標(biāo)表示與應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某四面體的三視圖,則該四面體的體積為( 。
A.$\frac{2}{3}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左焦點(diǎn)F1與拋物線y2=-4$\sqrt{3}$x的焦點(diǎn)重合,過點(diǎn)F1的直線l交橢圓于A,B兩點(diǎn).當(dāng)直線l經(jīng)過橢圓C的一個(gè)短軸端點(diǎn)時(shí),與以原點(diǎn)O為圓心,以橢圓的離心率e為半徑的圓相切.
(1)求橢圓C的方程;
(2)是否在x軸上存在定點(diǎn)M,使$\overrightarrow{AM}$•$\overrightarrow{BM}$為定值?若存在,請(qǐng)求出定點(diǎn)M及定值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某車間為了規(guī)定工時(shí)定額,需要確定加工零件所花費(fèi)的時(shí)間,為此作了四次試驗(yàn),得到的數(shù)據(jù)如表:
零件的個(gè)數(shù)x(個(gè))2345
加工的時(shí)間y(小時(shí))2.5344.5
(Ⅰ)在給定的坐標(biāo)系中畫出表中數(shù)據(jù)的散點(diǎn)圖;兩個(gè)變量y與x的回歸模型中,分別選擇了2個(gè)不同模型,模型①:$\stackrel{∧}{y}$=$\stackrel{∧}x$+$\stackrel{∧}{a}$,模型②:$\stackrel{∧}{y}$=$\stackrel{∧}{c}$$\sqrt{x}$+$\stackrel{∧}cakm2ky$,求$\stackrel{∧}{a}$,$\stackrel{∧}$,$\stackrel{∧}{c}$,$\stackrel{∧}4ie2ose$(精確到0.1);
(Ⅱ)比較兩個(gè)不同的模型的相關(guān)指數(shù)R12,R22,指出哪種模型的擬合效果最好,并說明理由.
附:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b\overline{x}}$,其中$\overline{x}$,$\overline{y}$為樣本平均數(shù),令z=$\sqrt{x}$,則$\sum_{i=1}^{4}$ziyi=26.8,$\overline{z}$=1.8,$\sqrt{2}$≈1.4,$\sqrt{3}$≈1.7,$\sqrt{5}$≈2.2,R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-{\stackrel{∧}{y}}_{i})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若A、B、C、D、E、F六個(gè)元素排成一列,要求A排在左端,B、C相鄰,則不同的排法有(  )
A.48種B.72種C.96種D.120種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如果執(zhí)行如圖所示的框圖,輸入N=5,則輸出的S等于( 。
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{6}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知二項(xiàng)式($\root{3}{x}$-$\frac{1}{x}$)n展開式中的各項(xiàng)系數(shù)的絕對(duì)值之和為128.
(Ⅰ)求展開式中系數(shù)最大的項(xiàng);
(Ⅱ)求展開式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在平面直角坐標(biāo)系xOy中,向量$\overrightarrow{OA}$=(1,2),$\overrightarrow{OB}$=(2,m),若O,A,B三點(diǎn)能構(gòu)成三角形,則(  )
A.m=4B.m≠4C.m≠-1D.m∈R

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.(x-y)2(x+y)7的展開式中x3y6的系數(shù)為0(用數(shù)字作答)

查看答案和解析>>

同步練習(xí)冊(cè)答案