6.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,若$A=45°,a=\sqrt{2},b=\sqrt{3}$,則B等于( 。
A.30°B.60°C.30°或150°D.60°或120°

分析 由已知利用正弦定理可求sinB的值,結(jié)合B的范圍,由特殊角的三角函數(shù)值即可得解.

解答 解:∵$A=45°,a=\sqrt{2},b=\sqrt{3}$,
∴由正弦定理可得:sinB=$\frac{bsinA}{a}$=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∵B∈(0°,180°),
∴B=60°,或120°.
故選:D.

點評 本題主要考查了正弦定理,特殊角的三角函數(shù)值在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.已知$\frac{{\sqrt{2}}}{2}({sin\frac{α}{2}-cos\frac{α}{2}})=\frac{{\sqrt{6}}}{3}$,則sinα的值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.對于正整數(shù)n,設xn是關于x的方程nx3+2x-n=0的實數(shù)根,記an=[(n+1)xn](n≥2),其中[x]表示不超過實數(shù)x的最大整數(shù),則$\frac{1}{1007}$(a2+a3+…+a2015)=2017.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.計算$\frac{cos10°-\sqrt{3}cos(-100°)}{\sqrt{1-sin10°}}$=$\sqrt{2}$(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,雙曲線 x2-y2=1的漸近線與橢圓C有四個交點,以這四個交點為頂點的四邊形的面積為8,則橢圓C的方程為( 。
A.$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{2}$=1B.$\frac{{x}^{2}}{12}$+$\frac{{y}^{2}}{6}$=1C.$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{5}$=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.二分法是求方程近似解的一種方法,其原理是“一分為二,無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.1,則輸出n的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了響應廈門市政府“低碳生活,綠色出行”的號召,思明區(qū)委文明辦率先全市發(fā)起“少開一天車,呵護廈門藍”綠色出行活動,“從今天開始,從我做起,力爭每周至少一天不開車,上下班或公務活動帶頭選擇步行、騎車或乘坐公交車,鼓勵拼車…”鏗鏘有力的話語,傳遞了低碳生活、綠色出行的理念.某機構(gòu)隨機調(diào)查了本市500名成年市民某月的騎車次數(shù),統(tǒng)計如下:


[0,10)[10,20)[20,30)[30,40)[40,50)[50,60]
18歲至30歲61420324048
31歲至44歲4620284042
45歲至59歲221833371911
60歲及以上1513101255
聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老年人.記本市一個年滿18歲的青年人月騎車的平均次數(shù)為μ.以樣本估計總體.
(Ⅰ)估計μ的值;
(Ⅱ)在本市老年人或中年人中隨機訪問3位,其中月騎車次數(shù)超過μ的人數(shù)記為ξ,求ξ的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=4,$\overrightarrow$•($\overrightarrow{a}$-$\overrightarrow$)=0,若|λ$\overrightarrow{a}$-$\overrightarrow$|的最小值為2(λ∈R),則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.0B.4C.8D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,若2B=A+C,求tanA+tanC-$\sqrt{3}$tanAtanC的值.

查看答案和解析>>

同步練習冊答案