1.在平面直角坐標(biāo)系中,角α的頂點與原點重合,始邊與x軸非負(fù)半軸重合,終邊過點P(-2,1),則sin2α的值為$-\frac{4}{5}$.

分析 利用任意角的三角函數(shù)的定義求得sinα、cosα的值,再利用二倍角的正弦公式求得sin2α的值.

解答 解:∵角α的頂點與原點重合,始邊與x軸非負(fù)半軸重合,終邊過點P(-2,1),
∴x=-2,y=1,r=|OP|=$\sqrt{5}$,
∴sinα=$\frac{y}{r}$=$\frac{1}{\sqrt{5}}$,cosα=$\frac{x}{r}$=-$\frac{2}{\sqrt{5}}$,
則sin2α=2sinαcosα=2•$\frac{1}{\sqrt{5}}$•(-$\frac{2}{\sqrt{5}}$)=-$\frac{4}{5}$,
故答案為:-$\frac{4}{5}$.

點評 本題主要考查任意角的三角函數(shù)的定義,二倍角的正弦公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{x}{a}$-ex(a>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[1,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過點p(1,2)且與直線3x+y-1=0平行的直線方程是( 。
A.3x+y-5=0B.x+3y-7=0C.x-3y+5=0D.x-3y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與y軸交于B1,B2兩點,F(xiàn)1為橢圓C的左焦點,且△F1B1B2是邊長為2的等邊三角形.
(1)求橢圓C的方程;
(2)設(shè)直線x=my+1與橢圓C交于P,Q兩點,點P關(guān)于x軸的對稱點為P1(P1與Q不重合),則直線P1Q與x軸是否交于一個定點?若是,請寫出定點坐標(biāo),并證明你的結(jié)論;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知各項均為正數(shù)且項數(shù)為4的數(shù)列{an}(n=1,2,3,4)的首項為1,若存在a3,使得對于任意的a4∈(7,8),均有$\sqrt{{a}_{k}•{a}_{k+2}}$<ak+1<$\frac{{a}_{k}+{a}_{k+2}}{2}$(k=1,2)成立,則a2的取值范圍為(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在數(shù)列{an}中,a1=1,an•an+1=$\frac{n+2}{n}$cos(n+1)π,設(shè)Tn為數(shù)列{an}的前n項的積,則T99=-50.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)直線y=kx+3與y=$\frac{1}{k}$x-5的交點在直線y=x上,求實數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知袋中裝有大小相同的8個小球,其中5個紅球的編號為1,2,3,4,5,3個藍(lán)球的編號為1,2,3,現(xiàn)從袋中任意取出3個小球.
(1)求取出的3個小球中,有小球編號為3的概率;
(2)記X為取出的3個小球中編號的最大值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.集合A={1,2,3,4},B={x∈R|x≤3},則A∩B=(  )
A.{1,2,3,4}B.{1,2,3}C.{2,3}D.{1,4}

查看答案和解析>>

同步練習(xí)冊答案