分析 (Ⅰ)根據(jù)數(shù)列的遞推關(guān)系利用作差法即可證明數(shù)列{an}成等比數(shù)列;
(Ⅱ)求出數(shù)列{an}的通項(xiàng)公式,利用累加法即可求出{bn}的通項(xiàng)公式.
解答 (Ⅰ)證明:因?yàn)?an-3Sn=2,①
所以當(dāng)n=1時(shí),4a1-3S1=2,解得a1=2;
當(dāng)n≥2時(shí),4an-1-3Sn-1=2,②…3 分
由①-②,得4an-4an-1-3(Sn-Sn-1)=0,
所以an=4an-1,
由a1=2,得an≠0,
故{an}是首項(xiàng)為2,公比為4的等比數(shù)列.
(Ⅱ)解:由(Ⅰ),得an=2×4n-1.
所以bn=$\frac{1}{2}$an-4n=4n-1-4n,
則{bn}的前n項(xiàng)和Tn=(40+41+…+4n-1)-4(1+2+3+…+n)=$\frac{1-{4}^{n}}{1-4}$-4×$\frac{n(n+1)}{2}$=$\frac{{4}^{n}}{3}$-2n2-2n-$\frac{1}{3}$.
點(diǎn)評(píng) 本題主要考查數(shù)列的通項(xiàng)公式的應(yīng)用,等比數(shù)列的證明,注意利用an=Sn-Sn-1時(shí),必須驗(yàn)證n=1的情形,以及等比數(shù)列和等差數(shù)列的前n項(xiàng)和公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若x2-x-2=0,則x=2”的逆否命題為“x≠2,則x2-x-2≠0” | |
B. | 若命題p:?x∈R,x2+x+1=0,則¬p:?x∈R,x2+x+1≠0 | |
C. | 若p∧q為假命題,則p,q均為假命題 | |
D. | “x>2”是“x2-3x+2>0”的充分不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | p是真命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥x | B. | p是真命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0 | ||
C. | p是假命題,¬p:?x∈(0,$\frac{π}{2}}$),sinx≥x | D. | p是假命題,¬p:?x0∈(0,$\frac{π}{2}}$),sinx0≥x0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com