20.給出以下四個結論,其中錯誤的是( 。
A.命題“若x2-x-2=0,則x=2”的逆否命題為“x≠2,則x2-x-2≠0”
B.若命題p:?x∈R,x2+x+1=0,則¬p:?x∈R,x2+x+1≠0
C.若p∧q為假命題,則p,q均為假命題
D.“x>2”是“x2-3x+2>0”的充分不必要條件

分析 A.根據逆否命題的定義可直接判斷;
B.對存在命題的否定:存在改為任意,再否定結論;
C.根據且命題的定義判斷;
D.根據充分不必要條件的定義判斷.

解答 解:A.命題“若x2-x-2=0,則x=2”的逆否命題為“x≠2,則x2-x-2≠0”,顯然正確;
B.對存在命題的否定:存在改為任意,再否定結論,故正確;
C.若p∧q為假命題,則p,q不都是真命題,但不一定均為假命題,故錯誤;
D.x>2能推出x2-3x+2>0”,但x2-3x+2>0得出x>2或x<1,故正確.
故選C.

點評 考查了逆否命題,存在命題和充分不必要條件的定義和且命題的理解.屬于基礎題型,應熟練掌握.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

10.已知二次函數(shù)f(x)=mx2-(1-m)x+m,其中m是實數(shù).
(1)若函數(shù)f(x)沒有零點,求m的取值范圍;
(2)設不等式f(x)<mx+m的解集為A且m>0,當m為何值時,集合A⊆(-∞,3)?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設等差數(shù)列{an}前n項和為Sn,且a5+a6=24,S11=143.
(1)求數(shù)列{an}的通項公式;
(2)數(shù)列{cn}的前n項和為Tn,且2${\;}^{{a}_{n}-1}$=λTn-2(λ是非零實數(shù)),{cn}是等比數(shù)列嗎?若是,求λ的值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知等差數(shù)列{an}中,a10=19,公差d≠0,且a1,a2,a5成等比數(shù)列.
(1)求an;
(2)設bn=$\frac{2}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知數(shù)列{an}的前n項和Sn滿足Sn=$\frac{3}{2}$an-(-1)n-2,(n∈N*).
(1)證明:{an-(-1)n}為等比數(shù)列,并求出{an}的通項公式;
(2)設數(shù)列{$\frac{1}{{a}_{n}}$}的前n項和為Tn,證明:Tn<$\frac{2}{3}$(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖所示的幾何體P-ABCD中,底面ABCD是梯形,且AD∥BC,點E是邊AD上的一點,AE=BC=AB,AD=3BC,點F是PD的中點,PB⊥AC.
(1)證明:PA=PC;
(2)證明:CF∥平面PBE.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知各項均為正數(shù)的數(shù)列{an}滿足an+1=4an+3,a1=1.
(1)設bn=log2(an+1),求證:數(shù)列{bn}為等差數(shù)列;
(2)設cn=$\sqrt{2({a}_{n}+1)}$•bn,求數(shù)列{cn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知數(shù)列{an}的前n項和Sn滿足4an-3Sn=2,其中n∈N*
(Ⅰ)求證:數(shù)列{an}為等比數(shù)列;
(Ⅱ)設bn=$\frac{1}{2}$an-4n,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知兩點A(3,2)和B(-1,4)到直線x+ay+1=0的距離相等,則實數(shù)a=2或-$\frac{2}{3}$.

查看答案和解析>>

同步練習冊答案