14.已知{an}是等差數(shù)列,滿足a1=3,a4=12,數(shù)列{bn}滿足b1=4,b4=20,且{bn-an}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和.

分析 (1)利用等差數(shù)列、等比數(shù)列的通項公式先求得公差和公比,即可求數(shù)列的通項公式;
(2)利用分組求和的方法求解數(shù)列的和,由等差數(shù)列及等比數(shù)列的前n項和公式即可求解數(shù)列的和.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,由題意得
d=$\frac{{{a_4}-{a_1}}}{3}$=$\frac{12-3}{3}$=3.
∴an=a1+(n-1)d=3n(n=1,2,…).
∴數(shù)列{an}的通項公式為:an=3n;
設(shè)等比數(shù)列{bn-an}的公比為q,由題意得:
q3=$\frac{{{b_4}-{a_4}}}{{{b_1}-{a_1}}}$=$\frac{20-12}{4-3}$=8,解得q=2.
∴bn-an=(b1-a1)qn-1=2n-1
從而bn=3n+2n-1(n=1,2,…).
∴數(shù)列{bn}的通項公式為:bn=3n+2n-1;
(2)由(1)知bn=3n+2n-1(n=1,2,…).
數(shù)列{3n}的前n項和為$\frac{3}{2}$n(n+1),數(shù)列{2n-1}的前n項和為$\frac{{1-{2^n}}}{1-2}$=2n-1.
∴數(shù)列{bn}的前n項和為$\frac{3}{2}$n(n+1)+2n-1.

點(diǎn)評 本題考查了等差數(shù)列、等比數(shù)列的通項公式,考查了利用分組求和的方法求解數(shù)列的前n項和,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{π}{3}$B.$\frac{5π}{6}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.某大學(xué)餐飲中心對全校一年級新生飲食習(xí)慣進(jìn)行抽樣調(diào)查,結(jié)果為:南方學(xué)生喜歡甜品的有60人,不喜歡甜品的有20人;北方學(xué)生喜歡甜品的有10人,不喜歡甜品的有10人.問有95%把握認(rèn)為“南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2>k00.100.050.010.005
k02.7063.8416.6357.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.五名學(xué)生(2名女生3名男生)照相,則女生都互不相鄰有多少種不同的排法?(  )
A.12B.48C.72D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.方程$\sqrt{{x^2}+{{(y+3)}^2}}$+$\sqrt{{x^2}+{{(y-3)}^2}}$=10所表示曲線的圖形是( 。
A.B.橢圓C.雙曲線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列哪個函數(shù)是奇函數(shù)( 。
A.f(x)=3x3+2x2+1B.f(x)=${x^{-\frac{1}{2}}}$C.f(x)=3xD.f(x)=$\frac{{\sqrt{4-{x^2}}}}{{|{x+3}|-3}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,已知c=$\sqrt{3}$,b=1,B=30°,則A等于( 。
A.30°B.90°C.30°或90°D.60°或120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.在△ABC中,tanA是以-4為第三項,4為第七項的等差數(shù)列的公差,tanB是以2為公差,9為第五項的等差數(shù)列的第二項,則這個三角形是(  )
A.銳角三角形B.鈍角三角形
C.等腰直角三角形D.等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求證:相交兩圓的公共弦的延長線上任一點(diǎn)到兩圓所作的切線長相等.

查看答案和解析>>

同步練習(xí)冊答案