7.已知函數(shù)f(x)=x2-ax-alnx(a∈R).$g(x)=-{x^3}+\frac{5}{2}{x^2}-4x+\frac{3}{2}$
(1)當(dāng)a=1時(shí),求證:?x1,x2∈(1,+∞),均有f(x1)≥g(x2
(2)當(dāng)x∈[1,+∞)時(shí),f(x)≥0恒成立,求a的取值范圍.

分析 (1)a=1時(shí),$f'(x)=2x-1-\frac{1}{x}=\frac{{2{x^2}-x-1}}{x}=\frac{(2x+1)(x-1)}{x}$,f(x)min=f(1)=0,g(x)max=g(1)<0,由此能證明當(dāng)a=1時(shí),?x1,x2∈(1,+∞),均有f(x1)≥g(x2).
(2)由x∈[1,+∞)知,x+ln x>0,f(x)≥0恒成立等價(jià)于a≤$\frac{x2}{x+lnx}$在x∈[1,+∞)時(shí)恒成立,令h(x)=$\frac{x2}{x+lnx}$,x∈[1,+∞),由此利用導(dǎo)數(shù)性質(zhì)能求出a的取值范圍.

解答 證明:(1)a=1時(shí),f(x)=x2-x-ln x,
$f'(x)=2x-1-\frac{1}{x}=\frac{{2{x^2}-x-1}}{x}=\frac{(2x+1)(x-1)}{x}$,
f(x)在(1,+∞)上是增函數(shù),f(x)min=f(1)=0,
g'(x)=-3x2+5x-4<0,
∴g(x)在(1,+∞)上是減函數(shù),g(x)max=g(1)<0
∴當(dāng)a=1時(shí),?x1,x2∈(1,+∞),均有f(x1)≥g(x2)…(5分)
解:(2)由x∈[1,+∞)知,x+ln x>0,…(6分)
∴f(x)≥0恒成立等價(jià)于a≤$\frac{x2}{x+lnx}$在x∈[1,+∞)時(shí)恒成立,…(7分)
令h(x)=$\frac{x2}{x+lnx}$,x∈[1,+∞),
有h′(x)=$\frac{x(x-1+2lnx)}{(x+lnx)2}$>0,…(8分)
x∈[1,+∞),h'(x)>0,h(x)單調(diào)遞增,
∴x∈[1,+∞)h(x)≥h(1)=1,∴a≤1.
∴a的取值范圍是(-∞,1].…(12分)

點(diǎn)評(píng) 本題考查不等式的證明,考查實(shí)數(shù)的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)直線(xiàn)m,n是兩條不同的直線(xiàn),α,β是兩個(gè)不同的平面,則α∥β的一個(gè)充分條件是( 。
A.m∥α,n∥β,m∥nB.m∥α,n⊥β,m∥nC.m⊥α,n∥β,m⊥nD.m⊥α,n⊥β,m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=x2-1,g(x)=|x-1|.
(I)若a=1,求函數(shù)y=|f(x)|-g(x)的零點(diǎn);
(II)若a<0時(shí),求G(x)=f(x)+g(x)在[0,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2\sqrt{3},x>1}\\{4sin(πx-\frac{π}{3}),0≤x≤1}\end{array}\right.$,則f(x)的最小值是( 。
A.-2$\sqrt{3}$B.2$\sqrt{3}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)$f(x)=\frac{1}{x}+alnx$,g(x)=f(x)+ax-lnx.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)是否存在常數(shù)t,使g(x)≥t對(duì)任意的a∈[1,e]和任意的x∈(0,+∞)都成立,若存在,求出t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為2的球面上,且三棱錐O-ABC的高為1,點(diǎn)D是線(xiàn)段BC的中點(diǎn),過(guò)點(diǎn)D作球O的截面,則截面面積的最小值為$\frac{9π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.等差數(shù)列{an}的前n項(xiàng)和記為Sn,滿(mǎn)足2n=$\sqrt{{S}_{n}+n}$,則數(shù)列{an}的公差d=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某程序框圖如圖所示,當(dāng)輸出y值為-8時(shí),則輸出x的值為( 。
A.64B.32C.16D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若函數(shù)f(x)=x3-3x-a在區(qū)間[0,3]上的最大值、最小值分別為M、N,則M-N的值為20.

查看答案和解析>>

同步練習(xí)冊(cè)答案