6.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)的圖象的最高點(diǎn)為($\frac{3π}{8}$,$\sqrt{2}$),其圖象的相鄰兩個(gè)對(duì)稱中心之間的距離為$\frac{π}{2}$,則φ=( 。
A.$-\frac{π}{3}$B.$-\frac{π}{4}$C.$-\frac{π}{6}$D.$-\frac{π}{12}$

分析 由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由最高點(diǎn)的坐標(biāo)求出φ的值,可得函數(shù)的解析式.

解答 解:∵函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,-$\frac{π}{2}$<φ<0)的圖象的最高點(diǎn)為($\frac{3π}{8}$,$\sqrt{2}$),∴A=$\sqrt{2}$.
∵其圖象的相鄰兩個(gè)對(duì)稱中心之間的距離為$\frac{T}{2}$=$\frac{1}{2}•\frac{2π}{ω}$=$\frac{π}{2}$,∴ω=2.
再根據(jù) 2•$\frac{3π}{8}$+φ=kπ+$\frac{π}{2}$,k∈Z,即φ=kπ-$\frac{π}{4}$,k∈Z,則φ=-$\frac{π}{4}$,
故選:B.

點(diǎn)評(píng) 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由最高點(diǎn)的坐標(biāo)求出φ的值,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)$\overrightarrow{a}$為單位向量,|$\overrightarrow$|=2,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{π}{3}$,兩組向量$\overrightarrow{{x}_{1}}$,$\overrightarrow{{x}_{2}}$,$\overrightarrow{{x}_{3}}$,$\overrightarrow{{x}_{4}}$和$\overrightarrow{{y}_{1}}$,$\overrightarrow{{y}_{2}}$,$\overrightarrow{{y}_{3}}$,$\overrightarrow{{y}_{4}}$均由2個(gè)$\overrightarrow{a}$和2個(gè)$\overrightarrow$排列而成,設(shè)S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$,則把所有的可能結(jié)果輸入如圖框圖,則輸出的結(jié)果為( 。
A.A=10,B=4B.A=4,B=10C.A=7,B=4D.A=10,B=7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知角α的終邊經(jīng)過(guò)點(diǎn)(-1,$\sqrt{3}$),則對(duì)函數(shù)f(x)=sinαcos2x+cosαcos(2x-$\frac{π}{2}$)的表述正確的是( 。
A.f(x)在區(qū)間$(-\frac{π}{3},\frac{π}{6})$上遞增
B.方程f(x)=0在[-$\frac{5}{6}π,0}$]上有三個(gè)零點(diǎn)
C.其中一個(gè)對(duì)稱中心為$(\frac{11}{12}π,0)$
D.函數(shù)y=sin2x向左平移$\frac{π}{3}$個(gè)單位可得到f(x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從一批產(chǎn)品中取出三件產(chǎn)品,設(shè)A=“三件產(chǎn)品全不是次品”,B=“三件產(chǎn)品全是次品”,C=“三件產(chǎn)品不全是次品”,則下列結(jié)論中正確的是( 。
A.A與C互斥B.A、B、C中任何兩個(gè)均互斥
C.B與C互斥D.A、B、C中任何兩個(gè)均不互斥

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某組合體如圖所示,上半部分是正四棱錐P-EFGH,下半部分是長(zhǎng)方體ABCD-EFGH.正四棱錐P-EFGH的高為$\sqrt{3}$,EF長(zhǎng)為2,AE長(zhǎng)為1,則該組合體的表面積為( 。
A.20B.4$\sqrt{3}$+12C.16D.4$\sqrt{3}$+8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.解不等式:x+$\frac{2}{x+1}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.f(x)=(x-1)0+$\sqrt{\frac{2}{x+1}}$的定義域是( 。
A.(-1,+∞)B.(-∞,-1)C.RD.(-1,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.過(guò)雙曲線C:$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$的右頂點(diǎn)A作斜率為l的直線l,若l與雙曲線C的兩條漸近線分別相交于點(diǎn)M,N,且|AM|=|MN|,則雙曲線C的離心率是(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{10}}{3}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.求過(guò)點(diǎn)A(1,0,1)和垂直向量$\overrightarrow{n}$=(2,-2,1)的平面的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案