精英家教網 > 高中數學 > 題目詳情

【題目】勒洛三角形是具有類似圓的“定寬性”的面積最小的曲線,它由德國機械工程專家,機構運動學家勒洛首先發(fā)現(xiàn),其作法是:以等邊三角形每個頂點為圓心,以邊長為半徑,在另兩個頂點間作一段弧,三段弧圍成的曲邊三角形就是勒洛三角形,現(xiàn)在勒洛三角形中隨機取一點,則此點取自正三角形外的概率為( )

A.B.

C.D.

【答案】A

【解析】

,將圓心角為的扇形面積減去等邊三角形的面積可得出弓形的面積,由此計算出圖中“勒洛三角形”的面積,然后利用幾何概型的概率公式可計算出所求事件的概率.

如下圖所示,設,則以點為圓心的扇形面積為,

等邊的面積為,其中一個弓形的面積為,

所以,勒洛三角形的面積可視為一個扇形面積加上兩個弓形的面積,

在勒洛三角形中隨機取一點,此點取自正三角形外部的概率,故選:A.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某網購平臺為了解某市居民在該平臺的消費情況,從該市使用其平臺且每周平均消費額超過100元的人員中隨機抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數可構成等差數列.

(1)求的值;

2)分析人員對100名調查對象的性別進行統(tǒng)計發(fā)現(xiàn),消費金額不低于300元的男性有20人,低于300元的男性有25人,根據統(tǒng)計數據完成下列列聯(lián)表,并判斷是否有的把握認為消費金額與性別有關?

(3)分析人員對抽取對象每周的消費金額與年齡進一步分析,發(fā)現(xiàn)他們線性相關,得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費金額為多少.(同一組數據用該區(qū)間的中點值代替)

列聯(lián)表

男性

女性

合計

消費金額

消費金額

合計

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的方程為,過點的直線的參數方程為為參數).

(Ⅰ)求直線的普通方程與曲線的直角坐標方程;

(Ⅱ)若直線與曲線交于、兩點,求的值,并求定點兩點的距離之積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數的導函數.

(1)求函數的單調區(qū)間;

(2)若函數上存在最大值0,求函數在[0,+∞)上的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(I)若曲線上點處的切線過點,求函數的單調減區(qū)間;

(II)若函數在區(qū)間內無零點,求實數的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如果函數的定義域為,且存在實常數,使得對于定義域內任意,都有成立,則稱此函數具有“性質.

1)判斷函數是否具有“性質”,若具有“性質”,求出所有的值的集合,若不具有“性質”,請說明理由;

2)已知函數具有“性質”,且當時,,求函數在區(qū)間上的值域;

3)已知函數既具有“性質”,又具有“性質”,且當時,,若函數的圖像與直線2017個公共點,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為拋物線的焦點,過點的直線交拋物線于,兩點,為坐標原點.

1)當拋物線過點時,求拋物線的方程;

2)證明:是定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知集合A{x|x22x30},B{x|x22mxm240xR,mR}

(1)AB[0,3],求實數m的值;

(2)ARB,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】配速是馬拉松運動中常使用的一個概念,是速度的一種,是指每公里所需要的時間,相比配速,把心率控制在一個合理水平是安全理性跑馬拉松的一個重要策略.1是一個馬拉松跑者的心率(單位:次/分鐘)和配速(單位:分鐘/公里)的散點圖,圖2是一次馬拉松比賽(全程約42公里)前3000名跑者成績(單位:分鐘)的頻率分布直方圖:

1)由散點圖看出,可用線性回歸模型擬合的關系,求的線性回歸方程;

2)該跑者如果參加本次比賽,將心率控制在160左右跑完全程,估計他能獲得的名次.

參考公式:線性回歸方程中,,參考數據:.

查看答案和解析>>

同步練習冊答案