1.如圖,在四棱錐S-ABCD中,SB⊥底面ABCD,底面ABCD為梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若點(diǎn)E是線段AD上的動(dòng)點(diǎn),則滿足∠SEC=90°的點(diǎn)E的個(gè)數(shù)是( 。
A.0B.1C.2D.3

分析 如圖所示,連接BE,由于SB⊥底面ABCD,∠SEC=90°,可得:CE⊥BE.設(shè)E(0,t)(0≤t≤3),由$\overrightarrow{CE}•\overrightarrow{BE}$=0,解出即可判斷出結(jié)論.

解答 解:如圖所示,
連接BE,∵SB⊥底面ABCD,∠SEC=90°,
∴CE⊥BE.
設(shè)E(0,t)(0≤t≤3),B(-1,3),C(-2,0),
則$\overrightarrow{CE}•\overrightarrow{BE}$=(2,t)•(1,t-3)=2+t(t-3)=0,
解得t=1或2.
∴E(0,1),或(0,2).
∴滿足∠SEC=90°的點(diǎn)E的個(gè)數(shù)是2.
故選:C.

點(diǎn)評 本題考查了空間位置關(guān)系、向量垂直與數(shù)量積的關(guān)系、三垂線定理,考查了空間想象能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)[x]表示不超過實(shí)數(shù)x的最大整數(shù),集合A={n|n=[$\frac{{k}^{2}}{2015}$],1≤k≤2016,k∈N},則A中元素的個(gè)數(shù)是1512.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖①,有一個(gè)長方體形狀的敞口玻璃容器,底面是邊長為20cm的正方形,高為30cm,內(nèi)有20cm深的溶液.現(xiàn)將此容器傾斜一定角度α(圖②),且傾斜時(shí)底面的一條棱始終在桌面上(圖①、②均為容器的縱截面).

(1)要使傾斜后容器內(nèi)的溶液不會(huì)溢出,角α的最大值是多少;
(2)現(xiàn)需要倒出不少于3000cm3的溶液,當(dāng)α=60°時(shí),能實(shí)現(xiàn)要求嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.與雙曲線$\frac{{x}^{2}}{2}$-y2=1有相同漸近線,且與橢圓$\frac{y^2}{8}+\frac{x^2}{2}$=1有共同焦點(diǎn)的雙曲線方程是$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.方程$(1-x)sinπx=\frac{1}{2}$,當(dāng)x∈[-2,4]時(shí),所有根的和等于( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的離心率是$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.經(jīng)過點(diǎn)(3,-$\sqrt{2}$)的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,其一條漸近線方程為y=$\frac{\sqrt{3}}{3}$x,該雙曲線的焦距為(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.雙曲線$\frac{y^2}{12}-\frac{x^2}{4}=1$的焦點(diǎn)到漸近線的距離為( 。
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,圓O的直徑AB=10,P是AB延長線上一點(diǎn),BP=2,割線PCD交圓O于點(diǎn)C,D,過點(diǎn)P作AP的垂線,交直線AC于點(diǎn)E,交直線AD于點(diǎn)F.
(Ⅰ) 當(dāng)∠PEC=60°時(shí),求∠PDF的度數(shù);
(Ⅱ) 求PE•PF的值.

查看答案和解析>>

同步練習(xí)冊答案