6.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的離心率是$\frac{\sqrt{13}}{2}$.

分析 求得雙曲線的a,b,c,運用離心率公式e=$\frac{c}{a}$,計算即可得到所求值.

解答 解:雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的a=2,b=3,
可得c=$\sqrt{{a}^{2}+^{2}}$=$\sqrt{13}$,
即有離心率e=$\frac{c}{a}$=$\frac{\sqrt{13}}{2}$.
故答案為:$\frac{\sqrt{13}}{2}$.

點評 本題考查雙曲線的離心率的求法,注意運用雙曲線的基本量的關(guān)系,考查運算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知p:“a≥$\frac{12}{t+\frac{1}{t}}$對t∈(0,+∞)恒成立”,q:“直線x-2y+a=0與曲線y-1=$\sqrt{4+2x-{x}^{2}}$有2個公共點”,則¬p是q的( 。
A.必要不充分條件B.充分不必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點為F,若過點F且傾斜角為30°的直線與雙曲線的右支有且只有一個交點,則此雙曲線離心率的取值范圍是(  )
A.($\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$)B.[$\frac{1}{2}$,$\frac{2\sqrt{3}}{3}$]C.($\frac{\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知拋物線y2=2px的焦點是雙曲線$\frac{x^2}{8}-\frac{y^2}{p}$=1的一個焦點,則雙曲線的漸近線方程為y=±x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,在四棱錐S-ABCD中,SB⊥底面ABCD,底面ABCD為梯形,AB⊥AD,AB∥CD,AB=1,AD=3,CD=2.若點E是線段AD上的動點,則滿足∠SEC=90°的點E的個數(shù)是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{3}$-$\frac{16{y}^{2}}{{p}^{2}}$=1的一個焦點在拋物線y2=2px的準線上,則該雙曲線的離心率為( 。
A.$\frac{2\sqrt{3}}{3}$B.$\frac{3}{2}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點在圓周上.若雙曲線以A、B為焦點,且過C、D兩點,則當(dāng)梯形ABCD的周長最大時,雙曲線的實軸長為2$\sqrt{3}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知正五棱錐底面邊長為2,底面正五邊形中心到側(cè)面斜高距離為3,斜高長為4,則此正五棱錐體積為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.sin1°,sin1,sinπ°的大小順序是( 。
A.sin1°<sin1<sinπ°B.sin1°<sinπ°<sin1
C.sinπ°<sin1°<sin1D.sin1<sin1°<sinπ°

查看答案和解析>>

同步練習(xí)冊答案