14.如圖,AB是圓O的直徑,點(diǎn)C在圓O上,矩形DCBE所在的平面垂直于圓O所在的平面,AB=4,BE=1.
(1)證明:平面ADE⊥平面ACD;
(2)當(dāng)三棱錐C-ADE的體積最大時,求直線CE與平面ADE所成角的正弦值.

分析 (1)由矩形性質(zhì)得出DE⊥CD,DE∥BC,由圓的性質(zhì)得出BC⊥AC,故而DE⊥AC,于是DE⊥平面ACD,從而得出平面ADE⊥平面ACD;
(2)設(shè)AC=x,求出棱錐C-ADE的體積,利用基本不等式得出當(dāng)x=2$\sqrt{2}$時棱錐體積最大,以C為原點(diǎn)建立坐標(biāo)系,求出$\overrightarrow{CE}$和平面ADE的法向量$\overrightarrow{n}$,則|cos<$\overrightarrow{n},\overrightarrow{CE}$>|即為所求.

解答 (1)證明:∵AB是圓O的直徑,
∴AC⊥AB,
∵四邊形DCBE是矩形,∴CD⊥DE,DE∥BC.
∴AC⊥DE.
又AC?平面ACD,CD?平面ACD,AC∩CD=C,
∴DE⊥平面ACD.∵DE?平面ADE,
∴平面ADE⊥平面ACD.
(2)解:設(shè)AC=x,則BC=$\sqrt{16-{x}^{2}}$,
∴VC-ADE=VE-ACD=$\frac{1}{3}{S}_{△ACD}•BC$=$\frac{1}{3}×\frac{1}{2}×x×1×\sqrt{16-{x}^{2}}$=$\frac{x\sqrt{16-{x}^{2}}}{6}$=$\frac{\sqrt{{x}^{2}(16-{x}^{2})}}{6}$≤$\frac{16}{12}$=$\frac{4}{3}$.
當(dāng)且僅當(dāng)x2=16-x2即x=2$\sqrt{2}$時,VC-ADE取得最大值.
以C為原點(diǎn),以CA,CB,CD為坐標(biāo)軸建立空間坐標(biāo)系如圖所示:
則A(2$\sqrt{2}$,0,0),C(0,0,0),D(0,0,1),E(0,2$\sqrt{2}$,1).
∴$\overrightarrow{CE}$=(0,2$\sqrt{2}$,1),$\overrightarrow{AD}$=(-2$\sqrt{2}$,0,1),$\overrightarrow{DE}$=(0,2$\sqrt{2}$,0).
設(shè)平面ADE的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AD}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=0}\end{array}\right.$,∴$\left\{\begin{array}{l}{-2\sqrt{2}x+z=0}\\{2\sqrt{2}y=0}\end{array}\right.$.
令x=$\sqrt{2}$得$\overrightarrow{n}$=($\sqrt{2}$,0,4),
∴cos<$\overrightarrow{n}$,$\overrightarrow{CE}$>=$\frac{\overrightarrow{n}•\overrightarrow{CE}}{|\overrightarrow{n}||\overrightarrow{CE}|}$=$\frac{4}{3•3\sqrt{2}}$=$\frac{2\sqrt{2}}{9}$.
∴直線CE與平面ADE所成角的正弦值為$\frac{2\sqrt{2}}{9}$.

點(diǎn)評 本題考查了面面垂直的判定,空間向量與線面角的計算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.根據(jù)下列條件求拋物線的標(biāo)準(zhǔn)方程:
(1)已知拋物線的焦點(diǎn)坐標(biāo)是F(0,-2);
(2)焦點(diǎn)在x軸負(fù)半軸上,焦點(diǎn)到準(zhǔn)線的距離是5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.四棱錐P-ABCD中,底面ABCD為菱形,∠ABC=60°,PA⊥平面ABCD,AB=2,PA=$\frac{2\sqrt{3}}{3}$,E為BC中點(diǎn),F(xiàn)在棱PD上,則當(dāng)EF與平面PAD所成角最大時,點(diǎn)B到平面AEF的距離為$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.72B.80C.86D.92

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如果根據(jù)數(shù)學(xué)成績是否及格與課后習(xí)題練習(xí)量的多少列聯(lián)表,得到K2的觀測值k=6.714,則判斷數(shù)學(xué)成績是否及格與課后習(xí)題練習(xí)量的多少有關(guān),那么這種判斷出錯的可能性為(  )
A.10%B.2.5%C.1%D.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某中學(xué)對男女學(xué)生是否喜愛古典音樂進(jìn)行了一個調(diào)查,調(diào)查者對學(xué)校高三年級隨機(jī)抽取了100名學(xué)生,調(diào)查結(jié)果如表:
喜愛不喜愛總計
男學(xué)生6080
女學(xué)生
總計7030
(1)完成如表,并根據(jù)表中數(shù)據(jù),判斷是否有95%的把握認(rèn)為“男學(xué)生和女學(xué)生喜歡古典音樂的程度有差異”;
(2)從以上被調(diào)查的學(xué)生中以性別為依據(jù)采用分層抽樣的方式抽取10名學(xué)生,再從這10名學(xué)生中隨機(jī)抽取5名學(xué)生去某古典音樂會的現(xiàn)場觀看演出,求正好有X個男生去觀看演出的分布列及期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k00.1000.0500.010
k02.7063.8416.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(t)=t2-t+2.
(1)當(dāng)t∈R時,求f(t)的值域.
(2)當(dāng)t∈[-1,2]時,求f(t)的值域.
(3)令t=sinx,求f(sinx)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知復(fù)數(shù)z=$\frac{4+bi}{1-i}$(b∈R)的實部為-1,則復(fù)數(shù)$\overline z$-b在復(fù)平面上對應(yīng)的點(diǎn)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.向量$\overrightarrow a$,$\overrightarrow b$滿足$\overrightarrow a$=(1,$\sqrt{3}$),|${\overrightarrow b}$|=1,|${\overrightarrow a$+2$\overrightarrow b}$|=2$\sqrt{3}$,則向量$\overrightarrow a$與$\overrightarrow b$的夾角為( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

同步練習(xí)冊答案