1.拋物線y2=4x的焦點為F,定點M(2,1),點P為拋物線上的一個動點,則|MP|+|PF|的最小值為( 。
A.5B.4C.3D.2

分析 由拋物線的定義,(|MP|+|PF|)min為點A到準(zhǔn)線的距離.

解答 解:易知點M(2,1)在拋物線的內(nèi)部,其準(zhǔn)線方程為x=-1
∴(|MP|+|PF|)min為點A到準(zhǔn)線的距離,即最小值為2+1=3,
故選:C

點評 本題考查拋物線的定義和性質(zhì)的應(yīng)用,考查運算求解能力,考查數(shù)形結(jié)合思想,解答的關(guān)鍵利用是拋物線定義,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若△ABC中,A<B<C,且C≠$\frac{π}{2}$,則下列結(jié)論中正確的是( 。
A.tanA<tanCB.tanA>tanCC.sinA<sinCD.cosA<cosC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知m>0,p:(x+2)(x-6)≤0,q:2-m≤x≤2+m.
(1)若p是q的充分不必要條件,求實數(shù)的取值范圍;
(2)若m=5,“p∧q”為真命題,“p∨q”為假命題,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.復(fù)數(shù)z滿足(2+i)z=-3+i,則z在復(fù)平面內(nèi)所對應(yīng)的點的坐標(biāo)是( 。
A.(2,1)B.(-1,1)C.(-1,-1)D.(2,-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠2萬元設(shè)計了某款式的服裝,根據(jù)經(jīng)驗,每生產(chǎn)1百套該款式服裝的成本為1萬元,每生產(chǎn)x(百套)的銷售額(單位:萬元)P(x)=$\left\{\begin{array}{l}{-0.4{x}^{2}+4.2x-0.8,0<x≤5}\\{14.7-\frac{9}{x-3},x>5}\end{array}\right.$.
(1)若生產(chǎn)6百套此款服裝,求該廠獲得的利潤;
(2)該廠至少生產(chǎn)多少套此款式服裝才可以不虧本?
(3)試確定該廠生產(chǎn)多少套此款式服裝可使利潤最大,并求最大利潤.(注:利潤=銷售額-成本,其中成本=設(shè)計費+生產(chǎn)成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知m,n是兩條不重合的直線,α,β是不重合的平面,下面四個命題中正確的是( 。
A.若m?α,n∥α,則m∥nB.若m⊥n,m⊥β,則n∥β
C.若α∩β=n,m∥n,則m∥α且m∥βD.若m⊥α,m⊥β,則α∥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.甲、乙兩名戰(zhàn)士在相同條件下各射靶10次,每次命中的環(huán)數(shù)分別是:
甲:8,6,7,8,6,5,9,10,4,7
乙:6,7,7,8,6,7,8,7,9,5
(1)分別計算以上兩組數(shù)據(jù)的平均數(shù)和方差;
(2)根據(jù)計算結(jié)果,估計一下兩名戰(zhàn)士的射擊情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若a+i=(1+2i)•i(i為虛數(shù)單位,a,t∈R),則a等于-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意x∈R,都有xf′(x)<f(x)成立,則( 。
A.2f(2)<f(4)B.2f(2)=f(4)
C.2f(2)>f(4)D.2f(2)與f(4)的大小不確定

查看答案和解析>>

同步練習(xí)冊答案