6.如果P${\;}_{m}^{3}$=6C${\;}_{m}^{4}$,則m=7.

分析 根據(jù)排列、組合數(shù)公式,化簡方程P${\;}_{m}^{3}$=6C${\;}_{m}^{4}$,求出m的值即可.

解答 解:∵P${\;}_{m}^{3}$=6C${\;}_{m}^{4}$,
∴m(m-1)(m-2)=6•$\frac{m(m-1)(m-2)(m-3)}{1×2×3×4}$,
化簡得m-3=4,
解得m=7.
故答案為:7.

點評 本題考查了排列數(shù)、組合數(shù)公式的應(yīng)用問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.對于非零實數(shù)a,b,c,以下四個命題都成立:
①(a+b)2=a2+2a•b+b2;  
②若a•b=a•c,則b=c;
③(a+b)•c=a•c+b•c;      
④(a•b)•c=a•(b•c);
那么類比于此,對于非零向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$,相應(yīng)命題仍然成立的所有序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.定義在(0,+∞)上的函數(shù)f(x)滿足f(x)>0,且2f(x)<xf′(x)<3f(x)對x∈(0,+∞)恒成立,其中f′(x)為f(x)的導(dǎo)函數(shù),則( 。
A.$\frac{1}{16}$<$\frac{f(1)}{f(2)}$<$\frac{1}{8}$B.$\frac{1}{8}$<$\frac{f(1)}{f(2)}$<$\frac{1}{4}$C.$\frac{1}{4}$<$\frac{f(1)}{f(2)}$<$\frac{1}{3}$D.$\frac{1}{3}$<$\frac{f(1)}{f(2)}$<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù) f(x)=$\left\{\begin{array}{l}{-x+6,x≤2}\\{3+lo{g}_{a}x,x>2}\end{array}\right.$(a>0且a≠1)
(1)若a=2,解不等式f(x)≤5;
(2)若函數(shù)f(x)的值域是[4,+∞),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.求y=$\frac{x-2}{(x-1)^{2}}$(x>2)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.若函數(shù)f(x)=$\sqrt{k{x}^{2}+4kx+3}$的定義域為R,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若以連續(xù)擲兩枚骰子,分別得到的點數(shù)m,n作為點P的坐標,則點P落在圓x2+y2=16外的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設(shè)f1(x)=cosx,定義fn+1(x)是fn(x)的導(dǎo)數(shù),即fn+1(x)=fn′(x),n∈N*,若△ABC的內(nèi)角A滿足f1(A)+f2(A)+…+f2014(A)=0,則sinA=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.$\frac{{{{sin}^2}50°}}{1+sin10°}$=( 。
A.-1B.1C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步練習冊答案