11.若函數(shù)f(x)=$\sqrt{k{x}^{2}+4kx+3}$的定義域?yàn)镽,求實(shí)數(shù)k的取值范圍.

分析 問(wèn)題轉(zhuǎn)化為y=kx2+4kx+3≥0在R恒成立,通過(guò)討論k的范圍結(jié)合二次函數(shù)的性質(zhì)求出k的范圍即可.

解答 解:若函數(shù)f(x)=$\sqrt{k{x}^{2}+4kx+3}$的定義域?yàn)镽,
則y=kx2+4kx+3≥0在R恒成立,
①k=0時(shí),3>0成立,
②k≠0時(shí),△=16k2-12k≤0,解得:0≤k≤$\frac{3}{4}$,
故k的范圍是[0,$\frac{3}{4}$].

點(diǎn)評(píng) 本題考查了求函數(shù)的對(duì)應(yīng)于問(wèn)題,考查二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.給出下列三個(gè)推理:
①由“若a,b,c∈R,則(ab)c=a(bc)”類(lèi)比“若$\overrightarrow a,\overrightarrow b,\overrightarrow c$為三個(gè)向量,則($\overrightarrow a$•$\overrightarrow b$)$\overrightarrow c$=$\overrightarrow a$($\overrightarrow b$•$\overrightarrow c$)”;
②在數(shù)列{an}中,a1=0,an+1=2an+2,(n∈N*),由a2,a3,a4猜想an=2n-2;
③由“在平面內(nèi)三角形的兩邊之和大于第三邊”類(lèi)比“在空間中四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積”.其中正確的是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在正方體ABCD-A1B1C1D1中,M是線段A1C1的中點(diǎn),若四面體M-ABD的外接球體積為36π,則正方體棱長(zhǎng)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知sinα+sinβ=sin(α+β),cosα+cosβ=cos(α+β).求cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如果P${\;}_{m}^{3}$=6C${\;}_{m}^{4}$,則m=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知等差數(shù)列{an}滿足a2=0,a6+a8=-10,則a2016=( 。
A.2014B.2015C.-2014D.-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知a為第二象限角,cosa=-$\frac{4}{5}$,則sin2a=-$\frac{24}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在數(shù)列{an}中,a1=1,an+1-an=ln(1+$\frac{1}{n}$),則an=lnn+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.記[x]是不超過(guò)x的最大整數(shù),當(dāng)0<x≤20時(shí),函數(shù)$f(x)=[\frac{x}{2}]+[\frac{x}{3}]+[\frac{x}{5}]+[\frac{x}{7}]+[\frac{x}{9}]-x$的零點(diǎn)為6,7,8.

查看答案和解析>>

同步練習(xí)冊(cè)答案