已知4名男生、4名女生排成一排,求:
(1)男女相間有多少種排法?
(2)女生在一起有多少種排法?
(3)男生甲、乙不相鄰有多少種排法?
考點(diǎn):計(jì)數(shù)原理的應(yīng)用
專題:排列組合
分析:(1)先排4名男生,形成5個(gè)間隔,插入4個(gè)女生即可,
(2)先把4個(gè)女生捆綁在一起,再和4名男生全排即可,
(3)先排除甲乙之外的6人形成7個(gè)間隔,插入甲乙即可
解答: 解:(1)先排4名男生,形成5個(gè)間隔,插入4個(gè)女生,故男女相間有
A
4
4
A
4
5
=2880種排法;
(2)先把4個(gè)女生捆綁在一起,再和4名男生全排,故女生在一起有
A
4
4
A
5
5
=2880種排法;
(3)先排除甲乙之外的6人形成7個(gè)間隔,插入甲乙,故男生甲、乙不相鄰有
A
6
6
A
2
7
=30240種排法;
點(diǎn)評(píng):本題考查排列問(wèn)題,相鄰問(wèn)題用捆綁,不相鄰問(wèn)題用插空,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=x-
3x
的大致圖象為( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=asinx+blog2(x+
x2+1
)+4(a、b為常數(shù)),若f(x)在(0,+∞)上有最小值-4,則f(x)在(-∞,0)上有( 。
A、最大值-2
B、最大值 4
C、最大值10
D、最大值12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xoy中,已知點(diǎn)A(0,1),B點(diǎn)在直線y=-1上,M點(diǎn)滿
MB
OA
MA
AB
=
MB
BA
,M點(diǎn)的軌跡曲線C
(1)求曲線C的方程;
(2)斜率為1的直線l過(guò)原點(diǎn)O,求l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知扇形的周長(zhǎng)為4,則該扇形的面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若P(x,y)在區(qū)域
x-3y+3≥0
2x+y≤4
y≤2x
y≥0
內(nèi),點(diǎn)M(3,5),則
OM
MP
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某畢業(yè)生參加人才招聘會(huì),分別向甲、乙、丙三個(gè)公司投遞了個(gè)人簡(jiǎn)歷.假定該畢業(yè)生得到甲、乙、丙三個(gè)公司面試的概率分別為
2
3
、p1、p2,且三個(gè)公司是否讓其面試是相互獨(dú)立的.記X為該畢業(yè)生得到面試的公司個(gè)數(shù).若P(X=3)=
1
6
,且E(X)=
5
3
,則p1+p2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)是定義域?yàn)镽的奇函數(shù),且對(duì)任意的x∈R,都有f(x+4)=f(x)成立,當(dāng)x∈(0,2),f(x)=-x2+1.
(Ⅰ)當(dāng)x∈(2,6)時(shí),求函數(shù)f(x)的解析式;
(Ⅱ)求不等式f(x)>-1在區(qū)間(2,6)上的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對(duì)應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.
x-10245
y12021
若函數(shù)y=f(x)-a有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍為( 。
A、[1,2)
B、[1,2]
C、(2,3)
D、[1,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案