4.在三棱錐P-ABC中,PA、PB、PC兩兩垂直,且PA=3,PB=2,PC=1,則三棱錐P-ABC的體積為1.

分析 利用側(cè)棱PA、PB、PC兩兩互相垂直,證出PA⊥平面PBC,即可用錐體體積公式求三棱錐的體積.

解答 解:∵側(cè)棱PA、PB、PC兩兩互相垂直,即PA⊥PB,PA⊥PC,而PB、PC是平面PBC內(nèi)的相交直線,
∴PA⊥平面PBC,
∵PA=3,PB=2,PC=1,
∴三棱錐P-ABC的體積V=$\frac{1}{3}$•S△PBC•PA=$\frac{1}{3}$×$\frac{1}{2}$×3×2×1=1.
故答案為:1.

點評 本題給出三棱錐三條側(cè)棱兩兩垂直,求三棱錐的體積,著重考查了線面垂直的判定和錐體體積公式等知識,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.(1+$\frac{2}{{x}^{2}}$)($\sqrt{x}$+$\frac{1}{\sqrt{x}}$)6的展開式中的常數(shù)項是(  )
A.12B.20C.26D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點F的直線與雙曲線相交于A,B兩點,當(dāng)AB⊥x軸,稱|AB|為雙曲線的通徑.若過焦點F的所有焦點弦AB中,其長度的最小值為$\frac{2^{2}}{a}$,則此雙曲線的離心率的范圍為(  )
A.(1,$\sqrt{2}$)B.(1,$\sqrt{2}$]C.($\sqrt{2}$,+∞)D.[$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平面直角坐標系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{{{a^2}-1}}$=1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當(dāng)點Q坐標為(0,1)時,點R坐標為(0,2)
(1)求橢圓C的標準方程;
(2)求證:$\overrightarrow{OQ}$•$\overrightarrow{OR}$為定值;
(3)求證:過點R且與直線QB垂直的直線經(jīng)過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.執(zhí)行如圖所示的算法流程圖,則輸出k的值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且b2+c2-a2=bc.
(Ⅰ)求角A的大;
(Ⅱ)已知a=2,設(shè)函數(shù)f(x)=$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$+cos2$\frac{x}{2}$,當(dāng)x=B時,f(x)取最大值,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若函數(shù)f(x)=2x2-klnx在(1,+∞)上是增函數(shù),則實數(shù)k的取值范圍是k≤4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知復(fù)數(shù)z1=1+i,z2=2-i,則$\frac{{z}_{1}{z}_{2}}{i}$=1-3i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=2sinx(sinx+cosx)
(Ⅰ)求f(x)的對稱軸方程和單調(diào)遞增區(qū)間;
(Ⅱ)在銳角三角形ABC中,已知f(A)=2,角A,B,C所對的邊分別為a,b,c,且a=2,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案