設(shè)命題p:存在x∈R,使a>x2+
1
x2
;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.如果命題“p或q”是真命題,求實數(shù)a的取值范圍.
考點:復(fù)合命題的真假
專題:簡易邏輯
分析:p或q是真命題,等價于p,q至少一個真命題,先求出都是假命題的a的范圍,從而得到p或q是真命題的a的范圍.
解答: 解:“p或q”是真命題,等價于p,q至少一個真命題,
命題p為假命題即任意x∈R,使a≤x2+
1
x2
,得a≤2,
命題q為假命題即曲線y=x2+(2a-3)x+1與x軸至多交于一點,
△=(2a-3)2-4≤0⇒
1
2
≤a≤
5
2
,
所以p,q都為假命題,得
1
2
≤a≤2

所以“p或q”是真命題,得a<
1
2
或a>2.
點評:本題考查了復(fù)合命題的真假,本題屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sinθ=
5
-1
4
,求
sinθ-cosθ
sinθ+cosθ
+
sinθ+cosθ
sinθ-cosθ
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意實數(shù)x,都有f(x)=loga(2+ex-1)≤-1,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=log2(x+1)的定義域為( 。
A、(0,+∞)
B、[-1,+∞)
C、(-1,+∞)
D、(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R+,lnx>0”的否定是( 。
A、?x∈R+,lnx>0
B、?x∈R+,lnx≤0
C、?x∈R+,lnx>0
D、?x∈R+,lnx≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知三棱臺ABC-A1B1C1的上底面面積為a2,下底面面積為b2(a>0,b>0),作截面AB1C1,設(shè)三棱錐B-AB1C1的高等于三棱臺的高,求△AB1C1的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x,y滿足約束條件
x+y-2≤0
2y-x+2≥0
2x-y+2≥0
,若z=y-2ax取得最大值的最優(yōu)解不唯一,則實數(shù)a的值為(  )
A、1或-
1
2
B、
1
2
或-1
C、2或1
D、2或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖正方形BCDE的邊長為a,已知AB=
3
BC,將△ABE沿BE邊折起,折起后A點在平面BCDE上的射影為D點,則翻折后的幾何體中有如下描述:
①AB與DE所成角的正切值是
2

②AB∥CE;
③VB-ACE的體積是
1
6
a2
④平面ABC⊥平面ADC;
⑤直線EA與平面ADB所成角為30°.
其中正確的有
 
.(填寫你認(rèn)為正確的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某專營店經(jīng)銷某商品,當(dāng)售價不高于10元時,每天能銷售100件,當(dāng)價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.

查看答案和解析>>

同步練習(xí)冊答案