設(shè)m、n是兩條不同的直線,、是兩個不同的平面,給出下列四個命題.
①若,則;
②若,,,則;
③若,,則;
④若,則.
其中正確命題的序號是                           (把所有正確命題的序號都填上).
①④
,則存在共面。因為所以,而,所以,從而可得,命題①正確;
命題②中,當時有,當時有。而當不在平面內(nèi)時,結(jié)論不成立,命題②不正確;
,則有,命題③不正確;
,則有。當時由可得,當時存在,因為,所以,從而可得,故命題④正確
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

四棱錐P—ABCD中,ABCD為矩形,△PAD為等腰直角三角形,∠APD=90°,面PAD⊥面ABCD,且AB=1,AD=2,E、F分別為PC和BD的中點.
(1)求證:EF∥面PAD;
(2)求證:面PDC⊥面PAB;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖6,平行四邊形中,,,,沿
起,使二面角是大小為銳角的二面角,設(shè)在平面上的射影為
(1)當為何值時,三棱錐的體積最大?最大值為多少?
(2)當時,求的大。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分14分)如圖,在三棱錐中,
,
設(shè)頂點在底面上的射影為
(Ⅰ)求證:;
(Ⅱ)設(shè)點在棱上,且
試求二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分9分)
如圖所示的多面體中,已知直角梯形和矩形所在的平面互相垂直,,,,.        
(Ⅰ)證明:平面;
(Ⅱ)設(shè)二面角的平面角為,求的值;
(Ⅲ)的中點,在上是否存在一點,使得∥平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,三棱錐中,底面,,的中點,點上,且.
(1)求證:平面平面;
(2)求平面與平面所成的二面角的平面角(銳角)的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體中,與平面所成角的余弦值為( ▲  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間,設(shè)是三條不同的直線,是三個不同的平面,則下列命題中為假命題的是
A.若,則
B.若,則
C.若,則
D.若,則

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題共14分)如圖,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC=2,,CC1=4,M是棱CC1上一點.
(Ⅰ)求證:BC⊥AM;
(Ⅱ)若M,N分別是CC1,AB的中點,求證:CN //平面AB1M;
(Ⅲ)若,求二面角A-MB1-C的大小.

查看答案和解析>>

同步練習冊答案