分析 (Ⅰ)推導(dǎo)出CD⊥平面AED,CD⊥平面BCF,從而平面AED∥平面BCF,由此能證明DG∥平面BCF.
(Ⅱ)取AD的中點(diǎn)O,連結(jié)OE,則OE⊥AD,以O(shè)D為x軸,以平面AED過O的垂線為y軸,以O(shè)E為y軸,建立空間直角坐標(biāo)系,利用向量法能求出平面DEF與平面BCF所成銳二面角的余弦值.
解答 證明:(Ⅰ)由題意知BC⊥DC,
∵平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,
又CD⊥AD,∴CD⊥平面AED,
同理,CD⊥平面BCF,
∴平面AED∥平面BCF,
又DC?平面AED,∴DG∥平面BCF.
解:(Ⅱ)取AD的中點(diǎn)O,連結(jié)OE,則OE⊥AD,
∵平面AED⊥平面ABCD,平面AED∩平面ABCD=AD,
∴OE⊥平面ABCD,以O(shè)D為x軸,以平面AED過O的垂線為y軸,以O(shè)E為y軸,建立空間直角坐標(biāo)系,
∵OE=$\sqrt{3}$,CF=1,
則O(0,0,0),$\overrightarrow{DF}$=(0,1,1),$\overrightarrow{CD}$=(0,-1,0),
設(shè)平面DEF的法向量$\overrightarrow{n}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DE}=-x+\sqrt{3}z=0}\\{\overrightarrow{n}•\overrightarrow{DF}=y+z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=($\sqrt{3}$,-1,1),
又$\overrightarrow{CD}$=(0,-1,0)是平面BCF的一個(gè)法向量,
∴cos<$\overrightarrow{n},\overrightarrow{CD}$>=$\frac{\overrightarrow{n}•\overrightarrow{CD}}{|\overrightarrow{n}|•|\overrightarrow{CD}|}$=$\frac{\sqrt{5}}{5}$,
∴平面DEF與平面BCF所成銳二面角的余弦值為$\frac{\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查線面平行的證明,考查線面角的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6和2.4 | B. | 6和5.6 | C. | 2和5.6 | D. | 2和2.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{69}{56}$ | B. | $\frac{7}{8}$ | C. | $\frac{69}{28}$ | D. | $\frac{7}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com