19.如圖,A、B、C為⊙O上三點(diǎn),B為$\widehat{AC}$的中點(diǎn),P為AC延長(zhǎng)線上一點(diǎn),PQ與⊙O相切于點(diǎn)Q,BQ與AC相交于點(diǎn)D.
(Ⅰ)證明:△DPQ為等腰三角形;
(Ⅱ)若PC=1,AD=PD,求BD•QD的值.

分析 (Ⅰ)連接CQ,BC,AB,證明∠PQD=∠CDQ,即可證明PD=PQ;
(Ⅱ)利用切割線定理,求出CD=1,AD=PD=2,即可求BD•QD.

解答 (Ⅰ)證明:連接CQ,BC,AB,
因?yàn)镻Q是圓O的切線,所以∠PQC=∠CBD,
因?yàn)锽為$\widehat{AC}$的中點(diǎn),所以∠CQB=∠ACB,
所以∠PQC+∠CQB=∠CBD+∠ACB,
即∠PQD=∠CDQ,
故△DPQ為等腰三角形.…(5分)
(Ⅱ)解:設(shè)CD=t,則PD=PQ=1+t,PA=2+2t,
由PQ2=PC•PA得t=1,
所以CD=1,AD=PD=2,
所以BD•QD=CD•AD=2.…(10分)

點(diǎn)評(píng) 本題考查與圓有關(guān)的比例線段,考查相等線段的證明,考查切割線定理,難度中等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知向量$\overrightarrow a$=(4,3),$\overrightarrow b$=(1,-1).
(1)求$\overrightarrow a$與$\overrightarrow b$的夾角的余弦值;
(2)若向量3$\overrightarrow a$+4$\overrightarrow b$與λ$\overrightarrow a$-$\overrightarrow b$平行,求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖1,已知四邊形ABFD為直角梯形,$AB∥DF,∠ADF=\frac{π}{2},△ADE$為等邊三角形,AD=DF=2AF=2,C為DF的質(zhì)點(diǎn),如圖2,將平面AED、BCF分別沿AD、BC折起,使得平面AED⊥平面ABCD,平面BCF⊥平面ABCD,連接EF、DF,設(shè)G為AE上任意一點(diǎn).
(1)證明:DG∥平面BCF;
(2)求平面DEF與平面BCF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.在正方體ABCD-A1B1C1D1中,BA1與平面AA1C1C所成的角等于$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,AD,CF分別是△ABC的中線和高線,PB,PC是△ABC外接圓O的切線,點(diǎn)E是PA與圓O的交點(diǎn).
(1)求證:AC•CD=AF•PC;
(2)求證:DC平分∠ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,E,F(xiàn)分別是BC,PC的中點(diǎn),H是PD上的動(dòng)點(diǎn),EH與平面PAD所成的角為θ.
(1)求證:平面AEF⊥平面PAD;
(2)求當(dāng)θ取最大值為$\frac{π}{4}$時(shí),二面角E-AF-C的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若a<b<0,則以下結(jié)論正確的是( 。
A.a2<ab<b2B.a2<b2<abC.a2>ab>b2D.a2>b2>ab

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)三個(gè)互不相等的數(shù)a,b,c成等比數(shù)列(a<b<c).其積為27,又a,b,c-4成等差數(shù)列,求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知正三棱柱ABC-A1B1C1所有的棱長(zhǎng)均為2,D是CC1的中點(diǎn).
(1)求多面體ABD-A1B1C1的體積.
(2)求直線CC1與平面ABD所成角的大。
(3)(理科)求二面角A-BD-B1的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案