3.函數(shù)y=2x+1,x∈{1,2,3}的值域是( 。
A.RB.[1,3]C.{1,2,3}D.{3,5,7}

分析 由題意x∈{1,2,3},將x的值帶入計算即可求得值域.

解答 解:函數(shù)y=2x+1,x∈{1,2,3}
當(dāng)x=1時,y=2×1+1=3;
當(dāng)x=1時,y=2×2+1=5;
當(dāng)x=1時,y=2×3+1=6;
所以函數(shù)的值域為{3,5,7}.
故選D.

點評 本題考查了函數(shù)的值域,函數(shù)求值.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=x2-1的值域為{0,1},這樣的函數(shù)有9個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$(a>0,且a≠1).
①若a=$\frac{3}{2}$,則函數(shù)f(x)的值域為(-$\frac{3}{2}$,+∞);
②若f(x)在R上是增函數(shù),則a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.銳角△ABC中,其內(nèi)角A、B滿足:2cosA=sinB-$\sqrt{3}$cosB.
(1)求角C的大;
(2)D為AB的中點,CD=1,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)x,y,a∈R*,且當(dāng)x+2y=1時,$\frac{3}{x}$+$\frac{a}{y}$的最小值為6$\sqrt{3}$,則當(dāng)$\frac{1}{x}$+$\frac{2}{y}$=1時,3x+ay的最小值是(  )
A.6$\sqrt{3}$B.6C.12D.12$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$f(x)=2\sqrt{3}sin(3ωx+\frac{π}{3})({ω>0})$,且f(x+θ)是最小正周期為2π的偶函數(shù).   
(1)求ω,θ的值;
(2)求f(x)在區(qū)間[0,π]上的最值及此時的x值;
(3)若$|θ|<\frac{π}{2}$,求y=cos(2x+θ)在[-π,π]的單增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,在棱長為4的正方體ABCD-A1B1C1D1中,O是AC的中點.
(1)求證:AD1∥平面DOC1;
(2)求異面直線AD1和DC1所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知f1(x)=(x2+2x+1)ex,f2(x)=[f1(x)]′,f3(x)=[f2(x)]′,…,fn+1(x)=[fn(x)]′,n∈N*.設(shè)fn(x)=(anx2+bnx+cn)ex,則c100=(  )
A.9903B.9902C.9901D.9900

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=2cos(2π-2x)的圖象可由函數(shù)y=cos2x+$\sqrt{3}$sin2x的圖象( 。
A.向左平移$\frac{π}{3}$個單位得到B.向右平移$\frac{π}{3}$個單位得到
C.向左平移$\frac{π}{6}$個單位得到D.向右平移$\frac{π}{6}$個單位得到

查看答案和解析>>

同步練習(xí)冊答案