16.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,bc=2,求b+c的值.

分析 (1)由正弦定理及兩角和的正弦公式可得sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,整理可求A
(2)通過余弦定理以及基本不等式求出b+c的范圍,再利用三角形三邊的關(guān)系求出b+c的范圍.

解答 解:(1)∵acosC+$\sqrt{3}$asinC-b-c=0,
∴sinAcosC+$\sqrt{3}$sinAsinC-sinB-sinC=0,
∴sinAcosC+$\sqrt{3}$sinAsinC=sinB+sinC
=sin(A+C)+sinC=sinAcosC+sinCcosA+sinC,
∵sinC≠0,
∴$\sqrt{3}$sinA-cosA=1,
∴sin(A-30°)=$\frac{1}{2}$,
∴A-30°=30°,
∴A=60°;
(2)由余弦定理得,a2=b2+c2-2bccosA,
則4=b2+c2-bc,
∴(b+c)2-3bc=4,
∵bc=2,
∴b+c=$\sqrt{10}$.

點(diǎn)評(píng) 本題綜合考查了三角公式中的正弦定理、余弦定理、基本不等式的綜合應(yīng)用,誘導(dǎo)公式與輔助角公式在三角函數(shù)化簡(jiǎn)中的應(yīng)用是求解的基礎(chǔ),解題的關(guān)鍵是熟練掌握基本公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-2+3t}\\{y=3-4t}\end{array}}\right.$(t為參數(shù)),則直線l的傾斜角的余弦值為( 。
A.$-\frac{4}{5}$B.$-\frac{3}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若2a8=8+a11,則S9的值等于( 。
A.54B.45C.72D.27

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知數(shù)列{an}中,a1=1,an+1=2an+1.
(Ⅰ)求a2,a3,a4,a5;
(Ⅱ)猜想an的表達(dá)式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知球O是正方體ABCD-A1B1C1D1的內(nèi)切球,則在正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)M,點(diǎn)M在球O外的概率是1-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知a,b,c分別是△ABC內(nèi)角A,B,C的對(duì)邊,點(diǎn)G是△ABC的重心,若A=$\frac{π}{3}$,$\overrightarrow{AB}•\overrightarrow{AC}$=6,|$\overrightarrow{AG}$|=2,則△ABC一定是( 。
A.直角三角形B.等腰直角三角形C.正三角形D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.執(zhí)行如圖的程序輸出的結(jié)果是15.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)常數(shù)a>0,λ∈R,函數(shù)f(x)=x2(x-a)-λ(x+a)3,若函數(shù)f(x)恰有兩個(gè)零點(diǎn),求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x3-ax2-3x.
(1)若a=4時(shí),求f(x)在x∈[1,4]上的最大值和最小值;
(2)若f(x)在x∈[2,+∞]上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案