11.已知球O是正方體ABCD-A1B1C1D1的內(nèi)切球,則在正方體ABCD-A1B1C1D1內(nèi)任取一點(diǎn)M,點(diǎn)M在球O外的概率是1-$\frac{π}{6}$.

分析 本題是幾何概型問題,欲求點(diǎn)M在球O外的概率,先由正方體ABCD-A1B1C1D1內(nèi)的內(nèi)切球O,求出其體積,再根據(jù)幾何概型概率公式結(jié)合正方體的體積的方法易求解.

解答 解:本題是幾何概型問題,設(shè)正方體的棱長(zhǎng)為:2.
正方體ABCD-A1B1C1D1內(nèi)的內(nèi)切球O的半徑是其棱長(zhǎng)的一半,
其體積為:V1=$\frac{4}{3}π×{1}^{3}$=$\frac{4π}{3}$
則點(diǎn)M在球O外的概率是1-$\frac{\frac{4π}{3}}{{2}^{3}}$=1-$\frac{π}{6}$.
故答案為:1-$\frac{π}{6}$.

點(diǎn)評(píng) 本小題主要考查幾何概型、幾何概型的應(yīng)用、幾何體和體積等基礎(chǔ)知識(shí),考查空間想象能力、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等比數(shù)列{an},a2=3,a5=81.
(Ⅰ)求a7和公比q;
(Ⅱ)設(shè)bn=an+log3an,求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-9n,第k項(xiàng)滿足10<ak<13,則k=( 。
A.9B.10C.11D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.甲、乙兩名運(yùn)動(dòng)員為了爭(zhēng)取得到2016年巴西奧運(yùn)會(huì)的最后一個(gè)參賽名額,共進(jìn)行了7輪比賽,得分情況如莖葉圖所示.
(1)根據(jù)莖葉圖分析甲、乙兩名運(yùn)動(dòng)員中哪位的比賽成績(jī)更為穩(wěn)定?
(2)若從甲運(yùn)動(dòng)員的7輪比賽不低于80且不高于90的得分中任選3個(gè),求這3個(gè)得分與其7輪比賽的平均得分的差的絕對(duì)值都不超過2的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一列數(shù)-1,3,-7,15,( 。,63,…,應(yīng)填入括號(hào)中的數(shù)字為(  )
A.33B.-31C.-27D.-57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,acosC+$\sqrt{3}$asinC-b-c=0.
(Ⅰ)求A;
(Ⅱ)若a=2,bc=2,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.連續(xù)6次射擊,把每次命中與否按順序記錄下來.
①可能出現(xiàn)多少種結(jié)果?
②恰好命中3次的結(jié)果有多少種?
③命中3次,恰好有兩次是連續(xù)命中的結(jié)果有多少種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知?jiǎng)訄AM的圓心M在y軸右側(cè),且動(dòng)圓M與圓(x-1)2+y2=1外切,與y軸相切.
(1)求點(diǎn)M的軌跡E的方程;
(2)已知點(diǎn)G(m,0)(m>0)為曲線E內(nèi)的一定點(diǎn),過點(diǎn)G作兩條直線l1,l2分別交曲線E于點(diǎn)A、B與點(diǎn)C、D,且P、Q分別是AB、CD的中點(diǎn),若l1,l2的斜率之和為1,求證:直線PQ過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=1,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=$\frac{3}{4}$.
(1)求|${\overrightarrow b}$|;  
 (2)當(dāng)$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{4}$時(shí),求向量$\overrightarrow a$與$\overrightarrow a$+2$\overrightarrow b$的夾角θ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案