分析 (1)化橢圓方程為標(biāo)準(zhǔn)式,求出半長軸和短半軸,結(jié)合隱含條件求出半焦距,則橢圓的離心率可求;
(2)設(shè)出點(diǎn)A,B的坐標(biāo)分別為(x0,y0),(t,2),其中x0≠0,由OA⊥OB得到$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,用坐標(biāo)表示后,把t用含有A點(diǎn)的坐標(biāo)表示,然后分A,B的橫坐標(biāo)相等和不相等,寫出直線AB的方程,然后由圓x2+y2=2的圓心到AB的距離和圓的半徑相等,說明直線AB與圓x2+y2=2相切.
解答 解:(1)橢圓C:x2+2y2=4,即為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,
可得a=2,b=$\sqrt{2}$,c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{2}$,
離心率e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$;
(2)直線AB與圓x2+y2=2相切.
證明如下:
設(shè)點(diǎn)A,B的坐標(biāo)分別為(x0,y0),(t,2),其中x0≠0.
∵OA⊥OB,
∴$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,即tx0+2y0=0,
解得t=-$\frac{2{y}_{0}}{{x}_{0}}$,
當(dāng)x0=t時(shí),y0=-$\frac{1}{2}$t2,代入橢圓C的方程,得t=±$\sqrt{2}$.
故直線AB的方程為x=±$\sqrt{2}$,
圓心O到直線AB的距離d=$\sqrt{2}$.
此時(shí)直線AB與圓x2+y2=2相切.
當(dāng)x0≠t時(shí),直線AB的方程為y-2=$\frac{{y}_{0}-2}{{x}_{0}-t}$(x-t),
即(y0-2)x-(x0-t)y+2x0-ty0=0.
圓心O到直線AB的距離d=$\frac{|2{x}_{0}-t{y}_{0}|}{\sqrt{({y}_{0}-2)^{2}+({x}_{0}-t)^{2}}}$.
又x02+2y02=4,t=-$\frac{2{y}_{0}}{{x}_{0}}$,
故d=$\frac{|2{x}_{0}+\frac{2{{y}_{0}}^{2}}{{x}_{0}}|}{\sqrt{{{x}_{0}}^{2}+{{y}_{0}}^{2}+\frac{4{{y}_{0}}^{2}}{{{x}_{0}}^{2}}+4}}$=$\frac{|\frac{4+{{x}_{0}}^{2}}{{x}_{0}}|}{\sqrt{\frac{{{x}_{0}}^{4}+8{{x}_{0}}^{2}+16}{2{{x}_{0}}^{2}}}}$=$\sqrt{2}$.
此時(shí)直線AB與圓x2+y2=2相切.
點(diǎn)評 本題考查橢圓的簡單幾何性質(zhì),考查了圓與圓錐曲線的綜合,訓(xùn)練了由圓心到直線的距離判斷直線和圓的位置關(guān)系,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,考查了計(jì)算能力和邏輯思維能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com